Height estimates and half-space theorems for hypersurfaces in product spaces of the type ℝ × M n
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Anais da Academia Brasileira de Ciências (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652021000600303 |
Resumo: | Abstract We obtain height estimates and half-space theorems concerning a wide class of hypersurfaces immersed into a product space ℝ × M n, the so-called generalized linear Weingarten hypersurfaces, which extends that one having some constant higher order mean curvature. |
id |
ABC-1_f6a060eb94e1e78b922839983143d1cb |
---|---|
oai_identifier_str |
oai:scielo:S0001-37652021000600303 |
network_acronym_str |
ABC-1 |
network_name_str |
Anais da Academia Brasileira de Ciências (Online) |
repository_id_str |
|
spelling |
Height estimates and half-space theorems for hypersurfaces in product spaces of the type ℝ × M n Product spacesgeneralized linear Weingarten hypersurfacesheight estimateshalf-space theoremsAbstract We obtain height estimates and half-space theorems concerning a wide class of hypersurfaces immersed into a product space ℝ × M n, the so-called generalized linear Weingarten hypersurfaces, which extends that one having some constant higher order mean curvature.Academia Brasileira de Ciências2021-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652021000600303Anais da Academia Brasileira de Ciências v.93 suppl.3 2021reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/0001-3765202120190329info:eu-repo/semantics/openAccessLIMA,EUDES L. DELIMA,HENRIQUE F. DEeng2021-11-29T00:00:00Zoai:scielo:S0001-37652021000600303Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2021-11-29T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false |
dc.title.none.fl_str_mv |
Height estimates and half-space theorems for hypersurfaces in product spaces of the type ℝ × M n |
title |
Height estimates and half-space theorems for hypersurfaces in product spaces of the type ℝ × M n |
spellingShingle |
Height estimates and half-space theorems for hypersurfaces in product spaces of the type ℝ × M n LIMA,EUDES L. DE Product spaces generalized linear Weingarten hypersurfaces height estimates half-space theorems |
title_short |
Height estimates and half-space theorems for hypersurfaces in product spaces of the type ℝ × M n |
title_full |
Height estimates and half-space theorems for hypersurfaces in product spaces of the type ℝ × M n |
title_fullStr |
Height estimates and half-space theorems for hypersurfaces in product spaces of the type ℝ × M n |
title_full_unstemmed |
Height estimates and half-space theorems for hypersurfaces in product spaces of the type ℝ × M n |
title_sort |
Height estimates and half-space theorems for hypersurfaces in product spaces of the type ℝ × M n |
author |
LIMA,EUDES L. DE |
author_facet |
LIMA,EUDES L. DE LIMA,HENRIQUE F. DE |
author_role |
author |
author2 |
LIMA,HENRIQUE F. DE |
author2_role |
author |
dc.contributor.author.fl_str_mv |
LIMA,EUDES L. DE LIMA,HENRIQUE F. DE |
dc.subject.por.fl_str_mv |
Product spaces generalized linear Weingarten hypersurfaces height estimates half-space theorems |
topic |
Product spaces generalized linear Weingarten hypersurfaces height estimates half-space theorems |
description |
Abstract We obtain height estimates and half-space theorems concerning a wide class of hypersurfaces immersed into a product space ℝ × M n, the so-called generalized linear Weingarten hypersurfaces, which extends that one having some constant higher order mean curvature. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652021000600303 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652021000600303 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/0001-3765202120190329 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
dc.source.none.fl_str_mv |
Anais da Academia Brasileira de Ciências v.93 suppl.3 2021 reponame:Anais da Academia Brasileira de Ciências (Online) instname:Academia Brasileira de Ciências (ABC) instacron:ABC |
instname_str |
Academia Brasileira de Ciências (ABC) |
instacron_str |
ABC |
institution |
ABC |
reponame_str |
Anais da Academia Brasileira de Ciências (Online) |
collection |
Anais da Academia Brasileira de Ciências (Online) |
repository.name.fl_str_mv |
Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC) |
repository.mail.fl_str_mv |
||aabc@abc.org.br |
_version_ |
1754302870520332288 |