Infinitesimal Hartman-Grobman Theorem in Dimension Three

Detalhes bibliográficos
Autor(a) principal: ALONSO-GONZÁLEZ,CLEMENTA
Data de Publicação: 2015
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Anais da Academia Brasileira de Ciências (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652015000401499
Resumo: ABSTRACTIn this paper we give the main ideas to show that a real analytic vector field in R3 with a singular point at the origin is locally topologically equivalent to its principal part defined through Newton polyhedra under non-degeneracy conditions.
id ABC-1_f6e54118ac8124eeed032156b465116d
oai_identifier_str oai:scielo:S0001-37652015000401499
network_acronym_str ABC-1
network_name_str Anais da Academia Brasileira de Ciências (Online)
repository_id_str
spelling Infinitesimal Hartman-Grobman Theorem in Dimension ThreeVector fieldssingularitiestopological typeNewton polyhedronprincipal partABSTRACTIn this paper we give the main ideas to show that a real analytic vector field in R3 with a singular point at the origin is locally topologically equivalent to its principal part defined through Newton polyhedra under non-degeneracy conditions.Academia Brasileira de Ciências2015-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652015000401499Anais da Academia Brasileira de Ciências v.87 n.3 2015reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/0001-3765201520140094info:eu-repo/semantics/openAccessALONSO-GONZÁLEZ,CLEMENTAeng2015-09-22T00:00:00Zoai:scielo:S0001-37652015000401499Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2015-09-22T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false
dc.title.none.fl_str_mv Infinitesimal Hartman-Grobman Theorem in Dimension Three
title Infinitesimal Hartman-Grobman Theorem in Dimension Three
spellingShingle Infinitesimal Hartman-Grobman Theorem in Dimension Three
ALONSO-GONZÁLEZ,CLEMENTA
Vector fields
singularities
topological type
Newton polyhedron
principal part
title_short Infinitesimal Hartman-Grobman Theorem in Dimension Three
title_full Infinitesimal Hartman-Grobman Theorem in Dimension Three
title_fullStr Infinitesimal Hartman-Grobman Theorem in Dimension Three
title_full_unstemmed Infinitesimal Hartman-Grobman Theorem in Dimension Three
title_sort Infinitesimal Hartman-Grobman Theorem in Dimension Three
author ALONSO-GONZÁLEZ,CLEMENTA
author_facet ALONSO-GONZÁLEZ,CLEMENTA
author_role author
dc.contributor.author.fl_str_mv ALONSO-GONZÁLEZ,CLEMENTA
dc.subject.por.fl_str_mv Vector fields
singularities
topological type
Newton polyhedron
principal part
topic Vector fields
singularities
topological type
Newton polyhedron
principal part
description ABSTRACTIn this paper we give the main ideas to show that a real analytic vector field in R3 with a singular point at the origin is locally topologically equivalent to its principal part defined through Newton polyhedra under non-degeneracy conditions.
publishDate 2015
dc.date.none.fl_str_mv 2015-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652015000401499
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652015000401499
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/0001-3765201520140094
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Academia Brasileira de Ciências
publisher.none.fl_str_mv Academia Brasileira de Ciências
dc.source.none.fl_str_mv Anais da Academia Brasileira de Ciências v.87 n.3 2015
reponame:Anais da Academia Brasileira de Ciências (Online)
instname:Academia Brasileira de Ciências (ABC)
instacron:ABC
instname_str Academia Brasileira de Ciências (ABC)
instacron_str ABC
institution ABC
reponame_str Anais da Academia Brasileira de Ciências (Online)
collection Anais da Academia Brasileira de Ciências (Online)
repository.name.fl_str_mv Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)
repository.mail.fl_str_mv ||aabc@abc.org.br
_version_ 1754302860871335936