Comparison between recent implicit time integration methods with frequency dissipation for nonlinear structural applications

Detalhes bibliográficos
Autor(a) principal: Fernandes,William Luiz
Data de Publicação: 2022
Outros Autores: Barbosa,Gustavo Botelho, Greco,Marcelo, Silveira,Ricardo Azoubel da Mota
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Latin American journal of solids and structures (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252022000300506
Resumo: Abstract The present paper aims to test recent (Truly self-starting two sub-step method and three-parameter single-step implicit method) and classical (Generalized-α, HHT-α, and WBZ-α methods) time integration methods using the geometrically nonlinear Positional Finite Element Method (PFEM). The numerical formulation is based on the total Lagrangian approach and uses the Hessian matrix to obtain the response. The mixed hardening inelastic model applied to PFEM is also presented. Two examples validate the time integration algorithms and the inelastic model. In the first example, the mixed hardening inelastic model is compared with the the bilinear stress-strain model and the elastic-perfectly plastic hinge model, and aspects such as amplitude decay and period elongation are discussed. In the second example, the implemented algorithms are verified in a severe geometrically nonlinear example, considering the influence of numerical dissipation, time interval, and the number of elements in the response. Results show the relevance of numerical damping for numerical stabilization and the good performance of the Generalized-α algorithm.
id ABCM-1_30a7d5282ea10765991f31424846238e
oai_identifier_str oai:scielo:S1679-78252022000300506
network_acronym_str ABCM-1
network_name_str Latin American journal of solids and structures (Online)
repository_id_str
spelling Comparison between recent implicit time integration methods with frequency dissipation for nonlinear structural applicationsGeometrical NonlinearityMixed Hardening ModelTime Integration MethodsPositional Finite Element FormulationNumerical Dissipation ControlStructural BehaviorAbstract The present paper aims to test recent (Truly self-starting two sub-step method and three-parameter single-step implicit method) and classical (Generalized-α, HHT-α, and WBZ-α methods) time integration methods using the geometrically nonlinear Positional Finite Element Method (PFEM). The numerical formulation is based on the total Lagrangian approach and uses the Hessian matrix to obtain the response. The mixed hardening inelastic model applied to PFEM is also presented. Two examples validate the time integration algorithms and the inelastic model. In the first example, the mixed hardening inelastic model is compared with the the bilinear stress-strain model and the elastic-perfectly plastic hinge model, and aspects such as amplitude decay and period elongation are discussed. In the second example, the implemented algorithms are verified in a severe geometrically nonlinear example, considering the influence of numerical dissipation, time interval, and the number of elements in the response. Results show the relevance of numerical damping for numerical stabilization and the good performance of the Generalized-α algorithm.Associação Brasileira de Ciências Mecânicas2022-20-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252022000300506Latin American Journal of Solids and Structures v.19 n.3 2022reponame:Latin American journal of solids and structures (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/1679-78256973info:eu-repo/semantics/openAccessFernandes,William LuizBarbosa,Gustavo BotelhoGreco,MarceloSilveira,Ricardo Azoubel da Motaeng2022-05-02T00:00:00Zoai:scielo:S1679-78252022000300506Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=1679-7825&lng=pt&nrm=isohttps://old.scielo.br/oai/scielo-oai.phpabcm@abcm.org.br||maralves@usp.br1679-78251679-7817opendoar:2022-05-02T00:00Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false
dc.title.none.fl_str_mv Comparison between recent implicit time integration methods with frequency dissipation for nonlinear structural applications
title Comparison between recent implicit time integration methods with frequency dissipation for nonlinear structural applications
spellingShingle Comparison between recent implicit time integration methods with frequency dissipation for nonlinear structural applications
Fernandes,William Luiz
Geometrical Nonlinearity
Mixed Hardening Model
Time Integration Methods
Positional Finite Element Formulation
Numerical Dissipation Control
Structural Behavior
title_short Comparison between recent implicit time integration methods with frequency dissipation for nonlinear structural applications
title_full Comparison between recent implicit time integration methods with frequency dissipation for nonlinear structural applications
title_fullStr Comparison between recent implicit time integration methods with frequency dissipation for nonlinear structural applications
title_full_unstemmed Comparison between recent implicit time integration methods with frequency dissipation for nonlinear structural applications
title_sort Comparison between recent implicit time integration methods with frequency dissipation for nonlinear structural applications
author Fernandes,William Luiz
author_facet Fernandes,William Luiz
Barbosa,Gustavo Botelho
Greco,Marcelo
Silveira,Ricardo Azoubel da Mota
author_role author
author2 Barbosa,Gustavo Botelho
Greco,Marcelo
Silveira,Ricardo Azoubel da Mota
author2_role author
author
author
dc.contributor.author.fl_str_mv Fernandes,William Luiz
Barbosa,Gustavo Botelho
Greco,Marcelo
Silveira,Ricardo Azoubel da Mota
dc.subject.por.fl_str_mv Geometrical Nonlinearity
Mixed Hardening Model
Time Integration Methods
Positional Finite Element Formulation
Numerical Dissipation Control
Structural Behavior
topic Geometrical Nonlinearity
Mixed Hardening Model
Time Integration Methods
Positional Finite Element Formulation
Numerical Dissipation Control
Structural Behavior
description Abstract The present paper aims to test recent (Truly self-starting two sub-step method and three-parameter single-step implicit method) and classical (Generalized-α, HHT-α, and WBZ-α methods) time integration methods using the geometrically nonlinear Positional Finite Element Method (PFEM). The numerical formulation is based on the total Lagrangian approach and uses the Hessian matrix to obtain the response. The mixed hardening inelastic model applied to PFEM is also presented. Two examples validate the time integration algorithms and the inelastic model. In the first example, the mixed hardening inelastic model is compared with the the bilinear stress-strain model and the elastic-perfectly plastic hinge model, and aspects such as amplitude decay and period elongation are discussed. In the second example, the implemented algorithms are verified in a severe geometrically nonlinear example, considering the influence of numerical dissipation, time interval, and the number of elements in the response. Results show the relevance of numerical damping for numerical stabilization and the good performance of the Generalized-α algorithm.
publishDate 2022
dc.date.none.fl_str_mv 2022-20-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252022000300506
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252022000300506
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1679-78256973
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Ciências Mecânicas
publisher.none.fl_str_mv Associação Brasileira de Ciências Mecânicas
dc.source.none.fl_str_mv Latin American Journal of Solids and Structures v.19 n.3 2022
reponame:Latin American journal of solids and structures (Online)
instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron:ABCM
instname_str Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron_str ABCM
institution ABCM
reponame_str Latin American journal of solids and structures (Online)
collection Latin American journal of solids and structures (Online)
repository.name.fl_str_mv Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
repository.mail.fl_str_mv abcm@abcm.org.br||maralves@usp.br
_version_ 1754302890979098624