Laminated Composites Buckling Analysis Using Lamination Parameters, Neural Networks and Support Vector Regression
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Latin American journal of solids and structures (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252015000200271 |
Resumo: | AbstractThis work presents a metamodel strategy to approximate the buckling load response of laminated composite plates. In order to obtain representative data for training the metamodel, some laminates with different stacking sequences are generated using the Latin hypercube sampling plan. These stacking sequences are converted into lamination parameters so that the number of inputs of the metamodel becomes constant. The buckling load for each laminate of the training set are computed using finite elements. In this way the inputs-outputs metamodel training pairs are the lamination parameters and the corresponding bucking load. Neural network and support vector regression metamodels are employed to approximate the buckling load. The performances of the metamodels are compared in a test case and the results are shown and discussed. |
id |
ABCM-1_32330464276b1f390239c8738e139361 |
---|---|
oai_identifier_str |
oai:scielo:S1679-78252015000200271 |
network_acronym_str |
ABCM-1 |
network_name_str |
Latin American journal of solids and structures (Online) |
repository_id_str |
|
spelling |
Laminated Composites Buckling Analysis Using Lamination Parameters, Neural Networks and Support Vector RegressionComposite laminatelamination parametersbucklingsupport vector regressionneural networkAbstractThis work presents a metamodel strategy to approximate the buckling load response of laminated composite plates. In order to obtain representative data for training the metamodel, some laminates with different stacking sequences are generated using the Latin hypercube sampling plan. These stacking sequences are converted into lamination parameters so that the number of inputs of the metamodel becomes constant. The buckling load for each laminate of the training set are computed using finite elements. In this way the inputs-outputs metamodel training pairs are the lamination parameters and the corresponding bucking load. Neural network and support vector regression metamodels are employed to approximate the buckling load. The performances of the metamodels are compared in a test case and the results are shown and discussed.Associação Brasileira de Ciências Mecânicas2015-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252015000200271Latin American Journal of Solids and Structures v.12 n.2 2015reponame:Latin American journal of solids and structures (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/1679-78251237info:eu-repo/semantics/openAccessKoide,Rubem M.Ferreira,Ana Paula C. S.Luersen,Marco A.eng2015-09-14T00:00:00Zoai:scielo:S1679-78252015000200271Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=1679-7825&lng=pt&nrm=isohttps://old.scielo.br/oai/scielo-oai.phpabcm@abcm.org.br||maralves@usp.br1679-78251679-7817opendoar:2015-09-14T00:00Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false |
dc.title.none.fl_str_mv |
Laminated Composites Buckling Analysis Using Lamination Parameters, Neural Networks and Support Vector Regression |
title |
Laminated Composites Buckling Analysis Using Lamination Parameters, Neural Networks and Support Vector Regression |
spellingShingle |
Laminated Composites Buckling Analysis Using Lamination Parameters, Neural Networks and Support Vector Regression Koide,Rubem M. Composite laminate lamination parameters buckling support vector regression neural network |
title_short |
Laminated Composites Buckling Analysis Using Lamination Parameters, Neural Networks and Support Vector Regression |
title_full |
Laminated Composites Buckling Analysis Using Lamination Parameters, Neural Networks and Support Vector Regression |
title_fullStr |
Laminated Composites Buckling Analysis Using Lamination Parameters, Neural Networks and Support Vector Regression |
title_full_unstemmed |
Laminated Composites Buckling Analysis Using Lamination Parameters, Neural Networks and Support Vector Regression |
title_sort |
Laminated Composites Buckling Analysis Using Lamination Parameters, Neural Networks and Support Vector Regression |
author |
Koide,Rubem M. |
author_facet |
Koide,Rubem M. Ferreira,Ana Paula C. S. Luersen,Marco A. |
author_role |
author |
author2 |
Ferreira,Ana Paula C. S. Luersen,Marco A. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Koide,Rubem M. Ferreira,Ana Paula C. S. Luersen,Marco A. |
dc.subject.por.fl_str_mv |
Composite laminate lamination parameters buckling support vector regression neural network |
topic |
Composite laminate lamination parameters buckling support vector regression neural network |
description |
AbstractThis work presents a metamodel strategy to approximate the buckling load response of laminated composite plates. In order to obtain representative data for training the metamodel, some laminates with different stacking sequences are generated using the Latin hypercube sampling plan. These stacking sequences are converted into lamination parameters so that the number of inputs of the metamodel becomes constant. The buckling load for each laminate of the training set are computed using finite elements. In this way the inputs-outputs metamodel training pairs are the lamination parameters and the corresponding bucking load. Neural network and support vector regression metamodels are employed to approximate the buckling load. The performances of the metamodels are compared in a test case and the results are shown and discussed. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-04-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252015000200271 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252015000200271 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1679-78251237 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Ciências Mecânicas |
publisher.none.fl_str_mv |
Associação Brasileira de Ciências Mecânicas |
dc.source.none.fl_str_mv |
Latin American Journal of Solids and Structures v.12 n.2 2015 reponame:Latin American journal of solids and structures (Online) instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) instacron:ABCM |
instname_str |
Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
instacron_str |
ABCM |
institution |
ABCM |
reponame_str |
Latin American journal of solids and structures (Online) |
collection |
Latin American journal of solids and structures (Online) |
repository.name.fl_str_mv |
Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
repository.mail.fl_str_mv |
abcm@abcm.org.br||maralves@usp.br |
_version_ |
1754302887731658752 |