Laminated Composites Buckling Analysis Using Lamination Parameters, Neural Networks and Support Vector Regression

Detalhes bibliográficos
Autor(a) principal: Koide,Rubem M.
Data de Publicação: 2015
Outros Autores: Ferreira,Ana Paula C. S., Luersen,Marco A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Latin American journal of solids and structures (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252015000200271
Resumo: AbstractThis work presents a metamodel strategy to approximate the buckling load response of laminated composite plates. In order to obtain representative data for training the metamodel, some laminates with different stacking sequences are generated using the Latin hypercube sampling plan. These stacking sequences are converted into lamination parameters so that the number of inputs of the metamodel becomes constant. The buckling load for each laminate of the training set are computed using finite elements. In this way the inputs-outputs metamodel training pairs are the lamination parameters and the corresponding bucking load. Neural network and support vector regression metamodels are employed to approximate the buckling load. The performances of the metamodels are compared in a test case and the results are shown and discussed.
id ABCM-1_32330464276b1f390239c8738e139361
oai_identifier_str oai:scielo:S1679-78252015000200271
network_acronym_str ABCM-1
network_name_str Latin American journal of solids and structures (Online)
repository_id_str
spelling Laminated Composites Buckling Analysis Using Lamination Parameters, Neural Networks and Support Vector RegressionComposite laminatelamination parametersbucklingsupport vector regressionneural networkAbstractThis work presents a metamodel strategy to approximate the buckling load response of laminated composite plates. In order to obtain representative data for training the metamodel, some laminates with different stacking sequences are generated using the Latin hypercube sampling plan. These stacking sequences are converted into lamination parameters so that the number of inputs of the metamodel becomes constant. The buckling load for each laminate of the training set are computed using finite elements. In this way the inputs-outputs metamodel training pairs are the lamination parameters and the corresponding bucking load. Neural network and support vector regression metamodels are employed to approximate the buckling load. The performances of the metamodels are compared in a test case and the results are shown and discussed.Associação Brasileira de Ciências Mecânicas2015-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252015000200271Latin American Journal of Solids and Structures v.12 n.2 2015reponame:Latin American journal of solids and structures (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/1679-78251237info:eu-repo/semantics/openAccessKoide,Rubem M.Ferreira,Ana Paula C. S.Luersen,Marco A.eng2015-09-14T00:00:00Zoai:scielo:S1679-78252015000200271Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=1679-7825&lng=pt&nrm=isohttps://old.scielo.br/oai/scielo-oai.phpabcm@abcm.org.br||maralves@usp.br1679-78251679-7817opendoar:2015-09-14T00:00Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false
dc.title.none.fl_str_mv Laminated Composites Buckling Analysis Using Lamination Parameters, Neural Networks and Support Vector Regression
title Laminated Composites Buckling Analysis Using Lamination Parameters, Neural Networks and Support Vector Regression
spellingShingle Laminated Composites Buckling Analysis Using Lamination Parameters, Neural Networks and Support Vector Regression
Koide,Rubem M.
Composite laminate
lamination parameters
buckling
support vector regression
neural network
title_short Laminated Composites Buckling Analysis Using Lamination Parameters, Neural Networks and Support Vector Regression
title_full Laminated Composites Buckling Analysis Using Lamination Parameters, Neural Networks and Support Vector Regression
title_fullStr Laminated Composites Buckling Analysis Using Lamination Parameters, Neural Networks and Support Vector Regression
title_full_unstemmed Laminated Composites Buckling Analysis Using Lamination Parameters, Neural Networks and Support Vector Regression
title_sort Laminated Composites Buckling Analysis Using Lamination Parameters, Neural Networks and Support Vector Regression
author Koide,Rubem M.
author_facet Koide,Rubem M.
Ferreira,Ana Paula C. S.
Luersen,Marco A.
author_role author
author2 Ferreira,Ana Paula C. S.
Luersen,Marco A.
author2_role author
author
dc.contributor.author.fl_str_mv Koide,Rubem M.
Ferreira,Ana Paula C. S.
Luersen,Marco A.
dc.subject.por.fl_str_mv Composite laminate
lamination parameters
buckling
support vector regression
neural network
topic Composite laminate
lamination parameters
buckling
support vector regression
neural network
description AbstractThis work presents a metamodel strategy to approximate the buckling load response of laminated composite plates. In order to obtain representative data for training the metamodel, some laminates with different stacking sequences are generated using the Latin hypercube sampling plan. These stacking sequences are converted into lamination parameters so that the number of inputs of the metamodel becomes constant. The buckling load for each laminate of the training set are computed using finite elements. In this way the inputs-outputs metamodel training pairs are the lamination parameters and the corresponding bucking load. Neural network and support vector regression metamodels are employed to approximate the buckling load. The performances of the metamodels are compared in a test case and the results are shown and discussed.
publishDate 2015
dc.date.none.fl_str_mv 2015-04-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252015000200271
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252015000200271
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1679-78251237
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Ciências Mecânicas
publisher.none.fl_str_mv Associação Brasileira de Ciências Mecânicas
dc.source.none.fl_str_mv Latin American Journal of Solids and Structures v.12 n.2 2015
reponame:Latin American journal of solids and structures (Online)
instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron:ABCM
instname_str Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron_str ABCM
institution ABCM
reponame_str Latin American journal of solids and structures (Online)
collection Latin American journal of solids and structures (Online)
repository.name.fl_str_mv Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
repository.mail.fl_str_mv abcm@abcm.org.br||maralves@usp.br
_version_ 1754302887731658752