Stress Distribution in Graded Cellular Materials Under Dynamic Compression

Detalhes bibliográficos
Autor(a) principal: Wang,Peng
Data de Publicação: 2017
Outros Autores: Wang,Xiaokai, Zheng,Zhijun, Yu,Jilin
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Latin American journal of solids and structures (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252017000701251
Resumo: Abstract Dynamic compression behaviors of density-homogeneous and density-graded irregular honeycombs are investigated using cell-based finite element models under a constant-velocity impact scenario. A method based on the cross-sectional engineering stress is developed to obtain the one-dimensional stress distribution along the loading direction in a cellular specimen. The cross-sectional engineering stress is contributed by two parts: the node-transitive stress and the contact-induced stress, which are caused by the nodal force and the contact of cell walls, respectively. It is found that the contact-induced stress is dominant for the significantly enhanced stress behind the shock front. The stress enhancement and the compaction wave propagation can be observed through the stress distributions in honeycombs under high-velocity compression. The single and double compaction wave modes are observed directly from the stress distributions. Theoretical analysis of the compaction wave propagation in the density-graded honeycombs based on the R-PH (rigid-plastic hardening) idealization is carried out and verified by the numerical simulations. It is found that stress distribution in cellular materials and the compaction wave propagation characteristics under dynamic compression can be approximately predicted by the R-PH shock model.
id ABCM-1_4e5d799e23f0682065c5c63db1fa464c
oai_identifier_str oai:scielo:S1679-78252017000701251
network_acronym_str ABCM-1
network_name_str Latin American journal of solids and structures (Online)
repository_id_str
spelling Stress Distribution in Graded Cellular Materials Under Dynamic Compressiondynamic crushingdensity gradientstress distributionstress enhancementshock wave speedAbstract Dynamic compression behaviors of density-homogeneous and density-graded irregular honeycombs are investigated using cell-based finite element models under a constant-velocity impact scenario. A method based on the cross-sectional engineering stress is developed to obtain the one-dimensional stress distribution along the loading direction in a cellular specimen. The cross-sectional engineering stress is contributed by two parts: the node-transitive stress and the contact-induced stress, which are caused by the nodal force and the contact of cell walls, respectively. It is found that the contact-induced stress is dominant for the significantly enhanced stress behind the shock front. The stress enhancement and the compaction wave propagation can be observed through the stress distributions in honeycombs under high-velocity compression. The single and double compaction wave modes are observed directly from the stress distributions. Theoretical analysis of the compaction wave propagation in the density-graded honeycombs based on the R-PH (rigid-plastic hardening) idealization is carried out and verified by the numerical simulations. It is found that stress distribution in cellular materials and the compaction wave propagation characteristics under dynamic compression can be approximately predicted by the R-PH shock model.Associação Brasileira de Ciências Mecânicas2017-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252017000701251Latin American Journal of Solids and Structures v.14 n.7 2017reponame:Latin American journal of solids and structures (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/1679-78253428info:eu-repo/semantics/openAccessWang,PengWang,XiaokaiZheng,ZhijunYu,Jilineng2017-08-22T00:00:00Zoai:scielo:S1679-78252017000701251Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=1679-7825&lng=pt&nrm=isohttps://old.scielo.br/oai/scielo-oai.phpabcm@abcm.org.br||maralves@usp.br1679-78251679-7817opendoar:2017-08-22T00:00Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false
dc.title.none.fl_str_mv Stress Distribution in Graded Cellular Materials Under Dynamic Compression
title Stress Distribution in Graded Cellular Materials Under Dynamic Compression
spellingShingle Stress Distribution in Graded Cellular Materials Under Dynamic Compression
Wang,Peng
dynamic crushing
density gradient
stress distribution
stress enhancement
shock wave speed
title_short Stress Distribution in Graded Cellular Materials Under Dynamic Compression
title_full Stress Distribution in Graded Cellular Materials Under Dynamic Compression
title_fullStr Stress Distribution in Graded Cellular Materials Under Dynamic Compression
title_full_unstemmed Stress Distribution in Graded Cellular Materials Under Dynamic Compression
title_sort Stress Distribution in Graded Cellular Materials Under Dynamic Compression
author Wang,Peng
author_facet Wang,Peng
Wang,Xiaokai
Zheng,Zhijun
Yu,Jilin
author_role author
author2 Wang,Xiaokai
Zheng,Zhijun
Yu,Jilin
author2_role author
author
author
dc.contributor.author.fl_str_mv Wang,Peng
Wang,Xiaokai
Zheng,Zhijun
Yu,Jilin
dc.subject.por.fl_str_mv dynamic crushing
density gradient
stress distribution
stress enhancement
shock wave speed
topic dynamic crushing
density gradient
stress distribution
stress enhancement
shock wave speed
description Abstract Dynamic compression behaviors of density-homogeneous and density-graded irregular honeycombs are investigated using cell-based finite element models under a constant-velocity impact scenario. A method based on the cross-sectional engineering stress is developed to obtain the one-dimensional stress distribution along the loading direction in a cellular specimen. The cross-sectional engineering stress is contributed by two parts: the node-transitive stress and the contact-induced stress, which are caused by the nodal force and the contact of cell walls, respectively. It is found that the contact-induced stress is dominant for the significantly enhanced stress behind the shock front. The stress enhancement and the compaction wave propagation can be observed through the stress distributions in honeycombs under high-velocity compression. The single and double compaction wave modes are observed directly from the stress distributions. Theoretical analysis of the compaction wave propagation in the density-graded honeycombs based on the R-PH (rigid-plastic hardening) idealization is carried out and verified by the numerical simulations. It is found that stress distribution in cellular materials and the compaction wave propagation characteristics under dynamic compression can be approximately predicted by the R-PH shock model.
publishDate 2017
dc.date.none.fl_str_mv 2017-08-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252017000701251
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252017000701251
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1679-78253428
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Ciências Mecânicas
publisher.none.fl_str_mv Associação Brasileira de Ciências Mecânicas
dc.source.none.fl_str_mv Latin American Journal of Solids and Structures v.14 n.7 2017
reponame:Latin American journal of solids and structures (Online)
instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron:ABCM
instname_str Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron_str ABCM
institution ABCM
reponame_str Latin American journal of solids and structures (Online)
collection Latin American journal of solids and structures (Online)
repository.name.fl_str_mv Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
repository.mail.fl_str_mv abcm@abcm.org.br||maralves@usp.br
_version_ 1754302889181839360