Multi-model finite element scheme for static and free vibration analyses of composite laminated beams
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Latin American journal of solids and structures (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252015001102061 |
Resumo: | Abstract A transition element is developed for the local global analysis of laminated composite beams. It bridges one part of the domain modelled with a higher order theory and other with a 2D mixed layerwise theory (LWT) used at critical zone of the domain. The use of developed transition element makes the analysis for interlaminar stresses possible with significant accuracy. The mixed 2D model incorporates the transverse normal and shear stresses as nodal degrees of freedom (DOF) which inherently ensures continuity of these stresses. Non critical zones are modelled with higher order equivalent single layer (ESL) theory leading to the global mesh with multiple models applied simultaneously. Use of higher order ESL in non critical zones reduces the total number of elements required to map the domain. A substantial reduction in DOF as compared to a complete 2D mixed model is obvious. This computationally economical multiple modelling scheme using the transition element is applied to static and free vibration analyses of laminated composite beams. Results obtained are in good agreement with benchmarks available in literature. |
id |
ABCM-1_4fd6ec327e06fed7351cfaa15e298c23 |
---|---|
oai_identifier_str |
oai:scielo:S1679-78252015001102061 |
network_acronym_str |
ABCM-1 |
network_name_str |
Latin American journal of solids and structures (Online) |
repository_id_str |
|
spelling |
Multi-model finite element scheme for static and free vibration analyses of composite laminated beamsMixed formulationfinite element methodlaminated composite beamstransition elementlocal global analysisHamilton's variational principleprinciple of minimum potential energyAbstract A transition element is developed for the local global analysis of laminated composite beams. It bridges one part of the domain modelled with a higher order theory and other with a 2D mixed layerwise theory (LWT) used at critical zone of the domain. The use of developed transition element makes the analysis for interlaminar stresses possible with significant accuracy. The mixed 2D model incorporates the transverse normal and shear stresses as nodal degrees of freedom (DOF) which inherently ensures continuity of these stresses. Non critical zones are modelled with higher order equivalent single layer (ESL) theory leading to the global mesh with multiple models applied simultaneously. Use of higher order ESL in non critical zones reduces the total number of elements required to map the domain. A substantial reduction in DOF as compared to a complete 2D mixed model is obvious. This computationally economical multiple modelling scheme using the transition element is applied to static and free vibration analyses of laminated composite beams. Results obtained are in good agreement with benchmarks available in literature.Associação Brasileira de Ciências Mecânicas2015-11-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252015001102061Latin American Journal of Solids and Structures v.12 n.11 2015reponame:Latin American journal of solids and structures (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/1679-78251743info:eu-repo/semantics/openAccessBand,U.N.Desai,Y.M.eng2015-11-26T00:00:00Zoai:scielo:S1679-78252015001102061Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=1679-7825&lng=pt&nrm=isohttps://old.scielo.br/oai/scielo-oai.phpabcm@abcm.org.br||maralves@usp.br1679-78251679-7817opendoar:2015-11-26T00:00Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false |
dc.title.none.fl_str_mv |
Multi-model finite element scheme for static and free vibration analyses of composite laminated beams |
title |
Multi-model finite element scheme for static and free vibration analyses of composite laminated beams |
spellingShingle |
Multi-model finite element scheme for static and free vibration analyses of composite laminated beams Band,U.N. Mixed formulation finite element method laminated composite beams transition element local global analysis Hamilton's variational principle principle of minimum potential energy |
title_short |
Multi-model finite element scheme for static and free vibration analyses of composite laminated beams |
title_full |
Multi-model finite element scheme for static and free vibration analyses of composite laminated beams |
title_fullStr |
Multi-model finite element scheme for static and free vibration analyses of composite laminated beams |
title_full_unstemmed |
Multi-model finite element scheme for static and free vibration analyses of composite laminated beams |
title_sort |
Multi-model finite element scheme for static and free vibration analyses of composite laminated beams |
author |
Band,U.N. |
author_facet |
Band,U.N. Desai,Y.M. |
author_role |
author |
author2 |
Desai,Y.M. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Band,U.N. Desai,Y.M. |
dc.subject.por.fl_str_mv |
Mixed formulation finite element method laminated composite beams transition element local global analysis Hamilton's variational principle principle of minimum potential energy |
topic |
Mixed formulation finite element method laminated composite beams transition element local global analysis Hamilton's variational principle principle of minimum potential energy |
description |
Abstract A transition element is developed for the local global analysis of laminated composite beams. It bridges one part of the domain modelled with a higher order theory and other with a 2D mixed layerwise theory (LWT) used at critical zone of the domain. The use of developed transition element makes the analysis for interlaminar stresses possible with significant accuracy. The mixed 2D model incorporates the transverse normal and shear stresses as nodal degrees of freedom (DOF) which inherently ensures continuity of these stresses. Non critical zones are modelled with higher order equivalent single layer (ESL) theory leading to the global mesh with multiple models applied simultaneously. Use of higher order ESL in non critical zones reduces the total number of elements required to map the domain. A substantial reduction in DOF as compared to a complete 2D mixed model is obvious. This computationally economical multiple modelling scheme using the transition element is applied to static and free vibration analyses of laminated composite beams. Results obtained are in good agreement with benchmarks available in literature. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-11-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252015001102061 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252015001102061 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1679-78251743 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Ciências Mecânicas |
publisher.none.fl_str_mv |
Associação Brasileira de Ciências Mecânicas |
dc.source.none.fl_str_mv |
Latin American Journal of Solids and Structures v.12 n.11 2015 reponame:Latin American journal of solids and structures (Online) instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) instacron:ABCM |
instname_str |
Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
instacron_str |
ABCM |
institution |
ABCM |
reponame_str |
Latin American journal of solids and structures (Online) |
collection |
Latin American journal of solids and structures (Online) |
repository.name.fl_str_mv |
Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
repository.mail.fl_str_mv |
abcm@abcm.org.br||maralves@usp.br |
_version_ |
1754302888090271744 |