Dynamic Response Analysis of Geogrid Reinforced Embankment Supported by CFG Pile Structure During a High-Speed Train Operation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Latin American journal of solids and structures (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252019000700505 |
Resumo: | Abstract The performance of railroad structure has a tremendous influence on the safety and stable operation of high-speed trains. Strong vibrations and the degradation rate of the track are the main factors affecting the transport safety of a railroad built over a weak soil. Geogrid reinforced embankment supported by pile structure is a new efficient construction technique used to ensure the stability and enhance the performance of the railroad system; but only a few studies are oriented to its behavior under train operation. This paper investigates the dynamic response of geogrid reinforced embankment supported by cement fly-ash gravel pile structure during a high-speed train operation. The establishment of a realistic simulation model for railroad subjected to a moving train load, is an important first step towards the reliable design of geogrid reinforced embankment supported by pile structure. Thus, a 3D nonlinear FEM has been established to simulate the instrumented Harbin-Dalian railway test section. Each train carriage was modeled as a transient dynamic load through a user-defined Dload subroutine. The developed model was successfully validated by the dynamic response recorded from the field test section. The improvement of the railroad structure by the CFG piles and geogrids contributed significantly to the reduction of the vibration in the structure, which attenuates 1.2 times faster with the structure depth, even under overload conditions. Moreover, the phenomenon of resonance observed when the train reaches speeds of 100 and 260 km/h were annihilated. The analysis of the stress distribution within the embankment revealed that a dynamic arch is formed in the embankment at 2 m from the ground. The stress onto the pile was 16 times greater than that acted on the soil and the tensile stress developed in the geogrid was high at the piles edge below. In addition, the coupling effect of geogrid with various tensile strengths and the piles with different strength grades indicated that the combination of a high-strength pile and geogrid significantly reduces the displacement gap due to the variation of train speed. As a result, the vibrations of the track were almost constant during the train operation; thus, ensuring comfort to passengers and reducing the risk of derailment. |
id |
ABCM-1_5861e23bd17e13c3baa8330046f8e8bf |
---|---|
oai_identifier_str |
oai:scielo:S1679-78252019000700505 |
network_acronym_str |
ABCM-1 |
network_name_str |
Latin American journal of solids and structures (Online) |
repository_id_str |
|
spelling |
Dynamic Response Analysis of Geogrid Reinforced Embankment Supported by CFG Pile Structure During a High-Speed Train Operationdynamic response3D-FEMtransient dynamic train loadpilegeogrid, vibrationAbstract The performance of railroad structure has a tremendous influence on the safety and stable operation of high-speed trains. Strong vibrations and the degradation rate of the track are the main factors affecting the transport safety of a railroad built over a weak soil. Geogrid reinforced embankment supported by pile structure is a new efficient construction technique used to ensure the stability and enhance the performance of the railroad system; but only a few studies are oriented to its behavior under train operation. This paper investigates the dynamic response of geogrid reinforced embankment supported by cement fly-ash gravel pile structure during a high-speed train operation. The establishment of a realistic simulation model for railroad subjected to a moving train load, is an important first step towards the reliable design of geogrid reinforced embankment supported by pile structure. Thus, a 3D nonlinear FEM has been established to simulate the instrumented Harbin-Dalian railway test section. Each train carriage was modeled as a transient dynamic load through a user-defined Dload subroutine. The developed model was successfully validated by the dynamic response recorded from the field test section. The improvement of the railroad structure by the CFG piles and geogrids contributed significantly to the reduction of the vibration in the structure, which attenuates 1.2 times faster with the structure depth, even under overload conditions. Moreover, the phenomenon of resonance observed when the train reaches speeds of 100 and 260 km/h were annihilated. The analysis of the stress distribution within the embankment revealed that a dynamic arch is formed in the embankment at 2 m from the ground. The stress onto the pile was 16 times greater than that acted on the soil and the tensile stress developed in the geogrid was high at the piles edge below. In addition, the coupling effect of geogrid with various tensile strengths and the piles with different strength grades indicated that the combination of a high-strength pile and geogrid significantly reduces the displacement gap due to the variation of train speed. As a result, the vibrations of the track were almost constant during the train operation; thus, ensuring comfort to passengers and reducing the risk of derailment.Associação Brasileira de Ciências Mecânicas2019-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252019000700505Latin American Journal of Solids and Structures v.16 n.7 2019reponame:Latin American journal of solids and structures (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/1679-78255710info:eu-repo/semantics/openAccessChango,Ishola Valere LoicYan,MuhanLing,XianzhangLiang,TangAssogba,Ogoubi Cyriaqueeng2019-08-13T00:00:00Zoai:scielo:S1679-78252019000700505Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=1679-7825&lng=pt&nrm=isohttps://old.scielo.br/oai/scielo-oai.phpabcm@abcm.org.br||maralves@usp.br1679-78251679-7817opendoar:2019-08-13T00:00Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false |
dc.title.none.fl_str_mv |
Dynamic Response Analysis of Geogrid Reinforced Embankment Supported by CFG Pile Structure During a High-Speed Train Operation |
title |
Dynamic Response Analysis of Geogrid Reinforced Embankment Supported by CFG Pile Structure During a High-Speed Train Operation |
spellingShingle |
Dynamic Response Analysis of Geogrid Reinforced Embankment Supported by CFG Pile Structure During a High-Speed Train Operation Chango,Ishola Valere Loic dynamic response 3D-FEM transient dynamic train load pile geogrid, vibration |
title_short |
Dynamic Response Analysis of Geogrid Reinforced Embankment Supported by CFG Pile Structure During a High-Speed Train Operation |
title_full |
Dynamic Response Analysis of Geogrid Reinforced Embankment Supported by CFG Pile Structure During a High-Speed Train Operation |
title_fullStr |
Dynamic Response Analysis of Geogrid Reinforced Embankment Supported by CFG Pile Structure During a High-Speed Train Operation |
title_full_unstemmed |
Dynamic Response Analysis of Geogrid Reinforced Embankment Supported by CFG Pile Structure During a High-Speed Train Operation |
title_sort |
Dynamic Response Analysis of Geogrid Reinforced Embankment Supported by CFG Pile Structure During a High-Speed Train Operation |
author |
Chango,Ishola Valere Loic |
author_facet |
Chango,Ishola Valere Loic Yan,Muhan Ling,Xianzhang Liang,Tang Assogba,Ogoubi Cyriaque |
author_role |
author |
author2 |
Yan,Muhan Ling,Xianzhang Liang,Tang Assogba,Ogoubi Cyriaque |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Chango,Ishola Valere Loic Yan,Muhan Ling,Xianzhang Liang,Tang Assogba,Ogoubi Cyriaque |
dc.subject.por.fl_str_mv |
dynamic response 3D-FEM transient dynamic train load pile geogrid, vibration |
topic |
dynamic response 3D-FEM transient dynamic train load pile geogrid, vibration |
description |
Abstract The performance of railroad structure has a tremendous influence on the safety and stable operation of high-speed trains. Strong vibrations and the degradation rate of the track are the main factors affecting the transport safety of a railroad built over a weak soil. Geogrid reinforced embankment supported by pile structure is a new efficient construction technique used to ensure the stability and enhance the performance of the railroad system; but only a few studies are oriented to its behavior under train operation. This paper investigates the dynamic response of geogrid reinforced embankment supported by cement fly-ash gravel pile structure during a high-speed train operation. The establishment of a realistic simulation model for railroad subjected to a moving train load, is an important first step towards the reliable design of geogrid reinforced embankment supported by pile structure. Thus, a 3D nonlinear FEM has been established to simulate the instrumented Harbin-Dalian railway test section. Each train carriage was modeled as a transient dynamic load through a user-defined Dload subroutine. The developed model was successfully validated by the dynamic response recorded from the field test section. The improvement of the railroad structure by the CFG piles and geogrids contributed significantly to the reduction of the vibration in the structure, which attenuates 1.2 times faster with the structure depth, even under overload conditions. Moreover, the phenomenon of resonance observed when the train reaches speeds of 100 and 260 km/h were annihilated. The analysis of the stress distribution within the embankment revealed that a dynamic arch is formed in the embankment at 2 m from the ground. The stress onto the pile was 16 times greater than that acted on the soil and the tensile stress developed in the geogrid was high at the piles edge below. In addition, the coupling effect of geogrid with various tensile strengths and the piles with different strength grades indicated that the combination of a high-strength pile and geogrid significantly reduces the displacement gap due to the variation of train speed. As a result, the vibrations of the track were almost constant during the train operation; thus, ensuring comfort to passengers and reducing the risk of derailment. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252019000700505 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252019000700505 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1679-78255710 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Ciências Mecânicas |
publisher.none.fl_str_mv |
Associação Brasileira de Ciências Mecânicas |
dc.source.none.fl_str_mv |
Latin American Journal of Solids and Structures v.16 n.7 2019 reponame:Latin American journal of solids and structures (Online) instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) instacron:ABCM |
instname_str |
Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
instacron_str |
ABCM |
institution |
ABCM |
reponame_str |
Latin American journal of solids and structures (Online) |
collection |
Latin American journal of solids and structures (Online) |
repository.name.fl_str_mv |
Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
repository.mail.fl_str_mv |
abcm@abcm.org.br||maralves@usp.br |
_version_ |
1754302890078371840 |