Green's function based finite element formulations for isotropic seepage analysis with free surface
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Latin American journal of solids and structures (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252015001001991 |
Resumo: | Abstract A solution procedure using the Green's function based finite element method (FEM) is presented for two-dimensional nonlinear steady-state seepage analysis with the presence of free surface in isotropic dams. In the present algorithm, an iteration strategy is designed to convert the over-specified free surface problem to a regular partial differential equation problem. Then, at each iteration step, the Green's function for isotropic linear seepage partial differential equation is employed to construct the element interior water head field, while the conventional shape functions are used for the independent element frame water head field. Then these two independent fields are connected by a double-variable hybrid functional to produce the final solving equation system. By means of the physical definition of Green's function, all two-dimensional element domain integrals in the present algorithm can reduce to one-dimensional element boundary integrals, so that versatile multi-node element is constructed to simplify mesh reconstruction during iteration. Finally, numerical results from the present Green's function based FEM with isotropic Green's function kernels are compared with other numerical results to verify and demonstrate the performance of the present method. |
id |
ABCM-1_67cbc405067dcf47381349c244eb2450 |
---|---|
oai_identifier_str |
oai:scielo:S1679-78252015001001991 |
network_acronym_str |
ABCM-1 |
network_name_str |
Latin American journal of solids and structures (Online) |
repository_id_str |
|
spelling |
Green's function based finite element formulations for isotropic seepage analysis with free surfaceSeepagefree surfaceisotropic damhybrid finite element methodGreen's functionAbstract A solution procedure using the Green's function based finite element method (FEM) is presented for two-dimensional nonlinear steady-state seepage analysis with the presence of free surface in isotropic dams. In the present algorithm, an iteration strategy is designed to convert the over-specified free surface problem to a regular partial differential equation problem. Then, at each iteration step, the Green's function for isotropic linear seepage partial differential equation is employed to construct the element interior water head field, while the conventional shape functions are used for the independent element frame water head field. Then these two independent fields are connected by a double-variable hybrid functional to produce the final solving equation system. By means of the physical definition of Green's function, all two-dimensional element domain integrals in the present algorithm can reduce to one-dimensional element boundary integrals, so that versatile multi-node element is constructed to simplify mesh reconstruction during iteration. Finally, numerical results from the present Green's function based FEM with isotropic Green's function kernels are compared with other numerical results to verify and demonstrate the performance of the present method.Associação Brasileira de Ciências Mecânicas2015-10-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252015001001991Latin American Journal of Solids and Structures v.12 n.10 2015reponame:Latin American journal of solids and structures (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/1679-78251726info:eu-repo/semantics/openAccessWang,HuiGao,Ya-TingQin,Qing-Huaeng2015-11-19T00:00:00Zoai:scielo:S1679-78252015001001991Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=1679-7825&lng=pt&nrm=isohttps://old.scielo.br/oai/scielo-oai.phpabcm@abcm.org.br||maralves@usp.br1679-78251679-7817opendoar:2015-11-19T00:00Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false |
dc.title.none.fl_str_mv |
Green's function based finite element formulations for isotropic seepage analysis with free surface |
title |
Green's function based finite element formulations for isotropic seepage analysis with free surface |
spellingShingle |
Green's function based finite element formulations for isotropic seepage analysis with free surface Wang,Hui Seepage free surface isotropic dam hybrid finite element method Green's function |
title_short |
Green's function based finite element formulations for isotropic seepage analysis with free surface |
title_full |
Green's function based finite element formulations for isotropic seepage analysis with free surface |
title_fullStr |
Green's function based finite element formulations for isotropic seepage analysis with free surface |
title_full_unstemmed |
Green's function based finite element formulations for isotropic seepage analysis with free surface |
title_sort |
Green's function based finite element formulations for isotropic seepage analysis with free surface |
author |
Wang,Hui |
author_facet |
Wang,Hui Gao,Ya-Ting Qin,Qing-Hua |
author_role |
author |
author2 |
Gao,Ya-Ting Qin,Qing-Hua |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Wang,Hui Gao,Ya-Ting Qin,Qing-Hua |
dc.subject.por.fl_str_mv |
Seepage free surface isotropic dam hybrid finite element method Green's function |
topic |
Seepage free surface isotropic dam hybrid finite element method Green's function |
description |
Abstract A solution procedure using the Green's function based finite element method (FEM) is presented for two-dimensional nonlinear steady-state seepage analysis with the presence of free surface in isotropic dams. In the present algorithm, an iteration strategy is designed to convert the over-specified free surface problem to a regular partial differential equation problem. Then, at each iteration step, the Green's function for isotropic linear seepage partial differential equation is employed to construct the element interior water head field, while the conventional shape functions are used for the independent element frame water head field. Then these two independent fields are connected by a double-variable hybrid functional to produce the final solving equation system. By means of the physical definition of Green's function, all two-dimensional element domain integrals in the present algorithm can reduce to one-dimensional element boundary integrals, so that versatile multi-node element is constructed to simplify mesh reconstruction during iteration. Finally, numerical results from the present Green's function based FEM with isotropic Green's function kernels are compared with other numerical results to verify and demonstrate the performance of the present method. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-10-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252015001001991 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252015001001991 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1679-78251726 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Ciências Mecânicas |
publisher.none.fl_str_mv |
Associação Brasileira de Ciências Mecânicas |
dc.source.none.fl_str_mv |
Latin American Journal of Solids and Structures v.12 n.10 2015 reponame:Latin American journal of solids and structures (Online) instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) instacron:ABCM |
instname_str |
Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
instacron_str |
ABCM |
institution |
ABCM |
reponame_str |
Latin American journal of solids and structures (Online) |
collection |
Latin American journal of solids and structures (Online) |
repository.name.fl_str_mv |
Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
repository.mail.fl_str_mv |
abcm@abcm.org.br||maralves@usp.br |
_version_ |
1754302888083980288 |