Optimized design of RC deep beams based on performance metrics applied to strut and tie model and in-plane stress conditions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Latin American journal of solids and structures (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252019000700508 |
Resumo: | Abstract Deep beams do not behave according to classical beam theory. The nonlinearity of strain distribution within these elements requires application of strut and tie models (STM) or other alternatives to evaluate the complex stress field. Although the design of these elements is a common task for structural engineers, limited research is found on assessing effectiveness of the results. The purpose of this work is to compare, in a systematic approach, different design solutions for a deep beam using selected performance metrics which are strain energy, reinforcement ratio, maximum load, structural efficiency, safety factor and cracking behavior. A deep beam (2.85 m of height, 4.20 m of length and 0.2 m of thickness) with a square opening (0.7 m x 0.7 m) close to one of the supports was subjected to a uniform loading at the top surface while resting on supports at both ends. A simplified finite element model (FEM) of this beam was developed simulating concrete with elastic linear stress-strain behavior and disregarding steel reinforcements. This model allowed determination of elastic stress fields necessary to subsequent analyses. Four STM were then developed, supposing the total load respectively represented by one (STM-1), two (STM-2), four (STM-4) or eight (STM-8) concentrated loads equally spaced along the top of the beam. Additionally, an in-plane stress field method (SFM) was applied to the design of the same beam subjected to uniform loading on the top surface. After design and detailing of the reinforcement for each situation, nonlinear FEMs were used to predict the ultimate conditions. The strain energy reduced significantly comparing results from STM-1 to STM-2 and subsequently to STM-4 and remained at a low level in STM-8 and SFM. The reinforcement ratio reduced systematically from STM-1 to STM-8, was minimum with the SFM and the same behavior was followed by maximum load. The structural efficiency (maximum load/reinforcement ratio) increased from STM-1 to STM-8, with maximum efficiency at STM-8 and was slightly below with SFM. The safety factor reduced systematically from STM-1 to STM-8 and was slightly lower with SFM, but in all cases was above acceptable limits found in design codes. |
id |
ABCM-1_707071fe8ce7860b5e7299bd5815373f |
---|---|
oai_identifier_str |
oai:scielo:S1679-78252019000700508 |
network_acronym_str |
ABCM-1 |
network_name_str |
Latin American journal of solids and structures (Online) |
repository_id_str |
|
spelling |
Optimized design of RC deep beams based on performance metrics applied to strut and tie model and in-plane stress conditionsDeep beamstrut and tie modelreinforced concretefinite element modelnonlinear analysisAbstract Deep beams do not behave according to classical beam theory. The nonlinearity of strain distribution within these elements requires application of strut and tie models (STM) or other alternatives to evaluate the complex stress field. Although the design of these elements is a common task for structural engineers, limited research is found on assessing effectiveness of the results. The purpose of this work is to compare, in a systematic approach, different design solutions for a deep beam using selected performance metrics which are strain energy, reinforcement ratio, maximum load, structural efficiency, safety factor and cracking behavior. A deep beam (2.85 m of height, 4.20 m of length and 0.2 m of thickness) with a square opening (0.7 m x 0.7 m) close to one of the supports was subjected to a uniform loading at the top surface while resting on supports at both ends. A simplified finite element model (FEM) of this beam was developed simulating concrete with elastic linear stress-strain behavior and disregarding steel reinforcements. This model allowed determination of elastic stress fields necessary to subsequent analyses. Four STM were then developed, supposing the total load respectively represented by one (STM-1), two (STM-2), four (STM-4) or eight (STM-8) concentrated loads equally spaced along the top of the beam. Additionally, an in-plane stress field method (SFM) was applied to the design of the same beam subjected to uniform loading on the top surface. After design and detailing of the reinforcement for each situation, nonlinear FEMs were used to predict the ultimate conditions. The strain energy reduced significantly comparing results from STM-1 to STM-2 and subsequently to STM-4 and remained at a low level in STM-8 and SFM. The reinforcement ratio reduced systematically from STM-1 to STM-8, was minimum with the SFM and the same behavior was followed by maximum load. The structural efficiency (maximum load/reinforcement ratio) increased from STM-1 to STM-8, with maximum efficiency at STM-8 and was slightly below with SFM. The safety factor reduced systematically from STM-1 to STM-8 and was slightly lower with SFM, but in all cases was above acceptable limits found in design codes.Associação Brasileira de Ciências Mecânicas2019-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252019000700508Latin American Journal of Solids and Structures v.16 n.7 2019reponame:Latin American journal of solids and structures (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/1679-78255633info:eu-repo/semantics/openAccessSantos,D. P.Fernandes Neto,J. A. D.Reginato,L.Carrazedo,R.eng2019-08-19T00:00:00Zoai:scielo:S1679-78252019000700508Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=1679-7825&lng=pt&nrm=isohttps://old.scielo.br/oai/scielo-oai.phpabcm@abcm.org.br||maralves@usp.br1679-78251679-7817opendoar:2019-08-19T00:00Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false |
dc.title.none.fl_str_mv |
Optimized design of RC deep beams based on performance metrics applied to strut and tie model and in-plane stress conditions |
title |
Optimized design of RC deep beams based on performance metrics applied to strut and tie model and in-plane stress conditions |
spellingShingle |
Optimized design of RC deep beams based on performance metrics applied to strut and tie model and in-plane stress conditions Santos,D. P. Deep beam strut and tie model reinforced concrete finite element model nonlinear analysis |
title_short |
Optimized design of RC deep beams based on performance metrics applied to strut and tie model and in-plane stress conditions |
title_full |
Optimized design of RC deep beams based on performance metrics applied to strut and tie model and in-plane stress conditions |
title_fullStr |
Optimized design of RC deep beams based on performance metrics applied to strut and tie model and in-plane stress conditions |
title_full_unstemmed |
Optimized design of RC deep beams based on performance metrics applied to strut and tie model and in-plane stress conditions |
title_sort |
Optimized design of RC deep beams based on performance metrics applied to strut and tie model and in-plane stress conditions |
author |
Santos,D. P. |
author_facet |
Santos,D. P. Fernandes Neto,J. A. D. Reginato,L. Carrazedo,R. |
author_role |
author |
author2 |
Fernandes Neto,J. A. D. Reginato,L. Carrazedo,R. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Santos,D. P. Fernandes Neto,J. A. D. Reginato,L. Carrazedo,R. |
dc.subject.por.fl_str_mv |
Deep beam strut and tie model reinforced concrete finite element model nonlinear analysis |
topic |
Deep beam strut and tie model reinforced concrete finite element model nonlinear analysis |
description |
Abstract Deep beams do not behave according to classical beam theory. The nonlinearity of strain distribution within these elements requires application of strut and tie models (STM) or other alternatives to evaluate the complex stress field. Although the design of these elements is a common task for structural engineers, limited research is found on assessing effectiveness of the results. The purpose of this work is to compare, in a systematic approach, different design solutions for a deep beam using selected performance metrics which are strain energy, reinforcement ratio, maximum load, structural efficiency, safety factor and cracking behavior. A deep beam (2.85 m of height, 4.20 m of length and 0.2 m of thickness) with a square opening (0.7 m x 0.7 m) close to one of the supports was subjected to a uniform loading at the top surface while resting on supports at both ends. A simplified finite element model (FEM) of this beam was developed simulating concrete with elastic linear stress-strain behavior and disregarding steel reinforcements. This model allowed determination of elastic stress fields necessary to subsequent analyses. Four STM were then developed, supposing the total load respectively represented by one (STM-1), two (STM-2), four (STM-4) or eight (STM-8) concentrated loads equally spaced along the top of the beam. Additionally, an in-plane stress field method (SFM) was applied to the design of the same beam subjected to uniform loading on the top surface. After design and detailing of the reinforcement for each situation, nonlinear FEMs were used to predict the ultimate conditions. The strain energy reduced significantly comparing results from STM-1 to STM-2 and subsequently to STM-4 and remained at a low level in STM-8 and SFM. The reinforcement ratio reduced systematically from STM-1 to STM-8, was minimum with the SFM and the same behavior was followed by maximum load. The structural efficiency (maximum load/reinforcement ratio) increased from STM-1 to STM-8, with maximum efficiency at STM-8 and was slightly below with SFM. The safety factor reduced systematically from STM-1 to STM-8 and was slightly lower with SFM, but in all cases was above acceptable limits found in design codes. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252019000700508 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252019000700508 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1679-78255633 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Ciências Mecânicas |
publisher.none.fl_str_mv |
Associação Brasileira de Ciências Mecânicas |
dc.source.none.fl_str_mv |
Latin American Journal of Solids and Structures v.16 n.7 2019 reponame:Latin American journal of solids and structures (Online) instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) instacron:ABCM |
instname_str |
Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
instacron_str |
ABCM |
institution |
ABCM |
reponame_str |
Latin American journal of solids and structures (Online) |
collection |
Latin American journal of solids and structures (Online) |
repository.name.fl_str_mv |
Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
repository.mail.fl_str_mv |
abcm@abcm.org.br||maralves@usp.br |
_version_ |
1754302890084663296 |