Experimental and numerical study of I-shape slit dampers in connections

Detalhes bibliográficos
Autor(a) principal: Lor,Hossein Akbari
Data de Publicação: 2018
Outros Autores: Izadinia,Mohsen, Memarzadeh,Parham
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Latin American journal of solids and structures (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252018001100502
Resumo: Abstract This paper proposes a new beam to column connection which has slit dampers to increase ductility and moment capacity of structures. After Northridge and Kobe earthquakes, many researchers have tried to achieve more ductile connections. Ductility of connections causes to dissipate more energy before failure of connections. Also, some researchers have tried to find methods that plastic hinge occurs out of the beam to column connection zone. The proposed detail connects beam to column by two I-shape slit dampers. One experimental specimen of the proposed connection was tested under cyclic loading. Based on the experimental results, the connection has high seismic performance and rotational capacity more than 0.04 radians. Also, the slit damper connection has more moment capacity than other common connections and indicates a good hysteretic behavior. Experimental observations showed that no cracks and fractures occurred in welds and high energy absorption of the slit dampers prevented damages of other parts. Also, local buckling didn’t occur on the flanges and web of the beam. The column and beam remain in elastic state. Some numerical models were made in ABAQUS software. Analysis results had good agreement with experimental results and showed high energy dissipation and ductility in the proposed connection.
id ABCM-1_714160661b5c55cfef1edee9bae46bfe
oai_identifier_str oai:scielo:S1679-78252018001100502
network_acronym_str ABCM-1
network_name_str Latin American journal of solids and structures (Online)
repository_id_str
spelling Experimental and numerical study of I-shape slit dampers in connectionsSlit damperSteel connectionDuctilityMoment capacityAbstract This paper proposes a new beam to column connection which has slit dampers to increase ductility and moment capacity of structures. After Northridge and Kobe earthquakes, many researchers have tried to achieve more ductile connections. Ductility of connections causes to dissipate more energy before failure of connections. Also, some researchers have tried to find methods that plastic hinge occurs out of the beam to column connection zone. The proposed detail connects beam to column by two I-shape slit dampers. One experimental specimen of the proposed connection was tested under cyclic loading. Based on the experimental results, the connection has high seismic performance and rotational capacity more than 0.04 radians. Also, the slit damper connection has more moment capacity than other common connections and indicates a good hysteretic behavior. Experimental observations showed that no cracks and fractures occurred in welds and high energy absorption of the slit dampers prevented damages of other parts. Also, local buckling didn’t occur on the flanges and web of the beam. The column and beam remain in elastic state. Some numerical models were made in ABAQUS software. Analysis results had good agreement with experimental results and showed high energy dissipation and ductility in the proposed connection.Associação Brasileira de Ciências Mecânicas2018-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252018001100502Latin American Journal of Solids and Structures v.15 n.11 2018reponame:Latin American journal of solids and structures (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/1679-78254416info:eu-repo/semantics/openAccessLor,Hossein AkbariIzadinia,MohsenMemarzadeh,Parhameng2018-11-07T00:00:00Zoai:scielo:S1679-78252018001100502Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=1679-7825&lng=pt&nrm=isohttps://old.scielo.br/oai/scielo-oai.phpabcm@abcm.org.br||maralves@usp.br1679-78251679-7817opendoar:2018-11-07T00:00Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false
dc.title.none.fl_str_mv Experimental and numerical study of I-shape slit dampers in connections
title Experimental and numerical study of I-shape slit dampers in connections
spellingShingle Experimental and numerical study of I-shape slit dampers in connections
Lor,Hossein Akbari
Slit damper
Steel connection
Ductility
Moment capacity
title_short Experimental and numerical study of I-shape slit dampers in connections
title_full Experimental and numerical study of I-shape slit dampers in connections
title_fullStr Experimental and numerical study of I-shape slit dampers in connections
title_full_unstemmed Experimental and numerical study of I-shape slit dampers in connections
title_sort Experimental and numerical study of I-shape slit dampers in connections
author Lor,Hossein Akbari
author_facet Lor,Hossein Akbari
Izadinia,Mohsen
Memarzadeh,Parham
author_role author
author2 Izadinia,Mohsen
Memarzadeh,Parham
author2_role author
author
dc.contributor.author.fl_str_mv Lor,Hossein Akbari
Izadinia,Mohsen
Memarzadeh,Parham
dc.subject.por.fl_str_mv Slit damper
Steel connection
Ductility
Moment capacity
topic Slit damper
Steel connection
Ductility
Moment capacity
description Abstract This paper proposes a new beam to column connection which has slit dampers to increase ductility and moment capacity of structures. After Northridge and Kobe earthquakes, many researchers have tried to achieve more ductile connections. Ductility of connections causes to dissipate more energy before failure of connections. Also, some researchers have tried to find methods that plastic hinge occurs out of the beam to column connection zone. The proposed detail connects beam to column by two I-shape slit dampers. One experimental specimen of the proposed connection was tested under cyclic loading. Based on the experimental results, the connection has high seismic performance and rotational capacity more than 0.04 radians. Also, the slit damper connection has more moment capacity than other common connections and indicates a good hysteretic behavior. Experimental observations showed that no cracks and fractures occurred in welds and high energy absorption of the slit dampers prevented damages of other parts. Also, local buckling didn’t occur on the flanges and web of the beam. The column and beam remain in elastic state. Some numerical models were made in ABAQUS software. Analysis results had good agreement with experimental results and showed high energy dissipation and ductility in the proposed connection.
publishDate 2018
dc.date.none.fl_str_mv 2018-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252018001100502
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252018001100502
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1679-78254416
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Ciências Mecânicas
publisher.none.fl_str_mv Associação Brasileira de Ciências Mecânicas
dc.source.none.fl_str_mv Latin American Journal of Solids and Structures v.15 n.11 2018
reponame:Latin American journal of solids and structures (Online)
instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron:ABCM
instname_str Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron_str ABCM
institution ABCM
reponame_str Latin American journal of solids and structures (Online)
collection Latin American journal of solids and structures (Online)
repository.name.fl_str_mv Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
repository.mail.fl_str_mv abcm@abcm.org.br||maralves@usp.br
_version_ 1754302889702981632