Modified Bolle - Reissner Theory of Plates Including Transverse Shear Deformations

Detalhes bibliográficos
Autor(a) principal: Valle,J. M. Martínez
Data de Publicação: 2015
Outros Autores: Martínez-Jiménez,P.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Latin American journal of solids and structures (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252015000200295
Resumo: AbstractIn this work, new equations for first-order shear deformation plates are deduced taking into account the kinematic assumptions of the Bolle-Reissner theory but considering the equilibrium equations in the deformed configuration for the plate. The system of differential equations deduced is applicable to the calculation of the stresses in isotropic plates and is valid for thin and moderately thick plates. Analytical solutions are also presented in this work which are compared, when possible, with the ones obtained with other refined shear deformation plate theories.
id ABCM-1_9cd98d2b37ed69ea6a9d613b035b584c
oai_identifier_str oai:scielo:S1679-78252015000200295
network_acronym_str ABCM-1
network_name_str Latin American journal of solids and structures (Online)
repository_id_str
spelling Modified Bolle - Reissner Theory of Plates Including Transverse Shear DeformationsModerately thick platesanalytical solutionsshear deformationAbstractIn this work, new equations for first-order shear deformation plates are deduced taking into account the kinematic assumptions of the Bolle-Reissner theory but considering the equilibrium equations in the deformed configuration for the plate. The system of differential equations deduced is applicable to the calculation of the stresses in isotropic plates and is valid for thin and moderately thick plates. Analytical solutions are also presented in this work which are compared, when possible, with the ones obtained with other refined shear deformation plate theories.Associação Brasileira de Ciências Mecânicas2015-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252015000200295Latin American Journal of Solids and Structures v.12 n.2 2015reponame:Latin American journal of solids and structures (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/1679-78251275info:eu-repo/semantics/openAccessValle,J. M. MartínezMartínez-Jiménez,P.eng2015-09-14T00:00:00Zoai:scielo:S1679-78252015000200295Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=1679-7825&lng=pt&nrm=isohttps://old.scielo.br/oai/scielo-oai.phpabcm@abcm.org.br||maralves@usp.br1679-78251679-7817opendoar:2015-09-14T00:00Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false
dc.title.none.fl_str_mv Modified Bolle - Reissner Theory of Plates Including Transverse Shear Deformations
title Modified Bolle - Reissner Theory of Plates Including Transverse Shear Deformations
spellingShingle Modified Bolle - Reissner Theory of Plates Including Transverse Shear Deformations
Valle,J. M. Martínez
Moderately thick plates
analytical solutions
shear deformation
title_short Modified Bolle - Reissner Theory of Plates Including Transverse Shear Deformations
title_full Modified Bolle - Reissner Theory of Plates Including Transverse Shear Deformations
title_fullStr Modified Bolle - Reissner Theory of Plates Including Transverse Shear Deformations
title_full_unstemmed Modified Bolle - Reissner Theory of Plates Including Transverse Shear Deformations
title_sort Modified Bolle - Reissner Theory of Plates Including Transverse Shear Deformations
author Valle,J. M. Martínez
author_facet Valle,J. M. Martínez
Martínez-Jiménez,P.
author_role author
author2 Martínez-Jiménez,P.
author2_role author
dc.contributor.author.fl_str_mv Valle,J. M. Martínez
Martínez-Jiménez,P.
dc.subject.por.fl_str_mv Moderately thick plates
analytical solutions
shear deformation
topic Moderately thick plates
analytical solutions
shear deformation
description AbstractIn this work, new equations for first-order shear deformation plates are deduced taking into account the kinematic assumptions of the Bolle-Reissner theory but considering the equilibrium equations in the deformed configuration for the plate. The system of differential equations deduced is applicable to the calculation of the stresses in isotropic plates and is valid for thin and moderately thick plates. Analytical solutions are also presented in this work which are compared, when possible, with the ones obtained with other refined shear deformation plate theories.
publishDate 2015
dc.date.none.fl_str_mv 2015-04-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252015000200295
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252015000200295
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1679-78251275
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Ciências Mecânicas
publisher.none.fl_str_mv Associação Brasileira de Ciências Mecânicas
dc.source.none.fl_str_mv Latin American Journal of Solids and Structures v.12 n.2 2015
reponame:Latin American journal of solids and structures (Online)
instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron:ABCM
instname_str Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron_str ABCM
institution ABCM
reponame_str Latin American journal of solids and structures (Online)
collection Latin American journal of solids and structures (Online)
repository.name.fl_str_mv Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
repository.mail.fl_str_mv abcm@abcm.org.br||maralves@usp.br
_version_ 1754302887732707328