A Heuristic Algorithm Based on Line-up Competition and Generalized Pattern Search for Solving Integer and Mixed Integer Non-linear Optimization Problems

Detalhes bibliográficos
Autor(a) principal: Shahriari,Behrooz
Data de Publicação: 2016
Outros Autores: Ravari,M. R. Karamooz, Yousefi,Shahram, Tajdari,Mahdi
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Latin American journal of solids and structures (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252016000200224
Resumo: Abstract The global optimization of integer and mixed integer non-linear problems has a lot of applications in engineering. In this paper a heuristic algorithm is developed using line-up competition and generalized pattern search to solve integer and mixed integer non-linear optimization problems subjected to various linear or nonlinear constraints. Due to its ability to find more than one local or global optimal points, the proposed algorithm is more beneficial for multi-modal problems. The performance of this algorithm is demonstrated through several non-convex integer and mixed integer optimization problems exhibiting good agreement with those reported in the literature. In addition, the convergence time is compared with LCAs' one demonstrating the efficiency and speed of the algorithm. Meanwhile, the constraints are satisfied after passing only a few iterations.
id ABCM-1_a0ee83ea7080512dfe82d4be0f40df39
oai_identifier_str oai:scielo:S1679-78252016000200224
network_acronym_str ABCM-1
network_name_str Latin American journal of solids and structures (Online)
repository_id_str
spelling A Heuristic Algorithm Based on Line-up Competition and Generalized Pattern Search for Solving Integer and Mixed Integer Non-linear Optimization ProblemsGlobal optimizationinteger optimizationmixed integer optimizationmulti-modal problemsconstraint optimizationAbstract The global optimization of integer and mixed integer non-linear problems has a lot of applications in engineering. In this paper a heuristic algorithm is developed using line-up competition and generalized pattern search to solve integer and mixed integer non-linear optimization problems subjected to various linear or nonlinear constraints. Due to its ability to find more than one local or global optimal points, the proposed algorithm is more beneficial for multi-modal problems. The performance of this algorithm is demonstrated through several non-convex integer and mixed integer optimization problems exhibiting good agreement with those reported in the literature. In addition, the convergence time is compared with LCAs' one demonstrating the efficiency and speed of the algorithm. Meanwhile, the constraints are satisfied after passing only a few iterations.Associação Brasileira de Ciências Mecânicas2016-02-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252016000200224Latin American Journal of Solids and Structures v.13 n.2 2016reponame:Latin American journal of solids and structures (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/1679-78252293info:eu-repo/semantics/openAccessShahriari,BehroozRavari,M. R. KaramoozYousefi,ShahramTajdari,Mahdieng2016-09-06T00:00:00Zoai:scielo:S1679-78252016000200224Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=1679-7825&lng=pt&nrm=isohttps://old.scielo.br/oai/scielo-oai.phpabcm@abcm.org.br||maralves@usp.br1679-78251679-7817opendoar:2016-09-06T00:00Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false
dc.title.none.fl_str_mv A Heuristic Algorithm Based on Line-up Competition and Generalized Pattern Search for Solving Integer and Mixed Integer Non-linear Optimization Problems
title A Heuristic Algorithm Based on Line-up Competition and Generalized Pattern Search for Solving Integer and Mixed Integer Non-linear Optimization Problems
spellingShingle A Heuristic Algorithm Based on Line-up Competition and Generalized Pattern Search for Solving Integer and Mixed Integer Non-linear Optimization Problems
Shahriari,Behrooz
Global optimization
integer optimization
mixed integer optimization
multi-modal problems
constraint optimization
title_short A Heuristic Algorithm Based on Line-up Competition and Generalized Pattern Search for Solving Integer and Mixed Integer Non-linear Optimization Problems
title_full A Heuristic Algorithm Based on Line-up Competition and Generalized Pattern Search for Solving Integer and Mixed Integer Non-linear Optimization Problems
title_fullStr A Heuristic Algorithm Based on Line-up Competition and Generalized Pattern Search for Solving Integer and Mixed Integer Non-linear Optimization Problems
title_full_unstemmed A Heuristic Algorithm Based on Line-up Competition and Generalized Pattern Search for Solving Integer and Mixed Integer Non-linear Optimization Problems
title_sort A Heuristic Algorithm Based on Line-up Competition and Generalized Pattern Search for Solving Integer and Mixed Integer Non-linear Optimization Problems
author Shahriari,Behrooz
author_facet Shahriari,Behrooz
Ravari,M. R. Karamooz
Yousefi,Shahram
Tajdari,Mahdi
author_role author
author2 Ravari,M. R. Karamooz
Yousefi,Shahram
Tajdari,Mahdi
author2_role author
author
author
dc.contributor.author.fl_str_mv Shahriari,Behrooz
Ravari,M. R. Karamooz
Yousefi,Shahram
Tajdari,Mahdi
dc.subject.por.fl_str_mv Global optimization
integer optimization
mixed integer optimization
multi-modal problems
constraint optimization
topic Global optimization
integer optimization
mixed integer optimization
multi-modal problems
constraint optimization
description Abstract The global optimization of integer and mixed integer non-linear problems has a lot of applications in engineering. In this paper a heuristic algorithm is developed using line-up competition and generalized pattern search to solve integer and mixed integer non-linear optimization problems subjected to various linear or nonlinear constraints. Due to its ability to find more than one local or global optimal points, the proposed algorithm is more beneficial for multi-modal problems. The performance of this algorithm is demonstrated through several non-convex integer and mixed integer optimization problems exhibiting good agreement with those reported in the literature. In addition, the convergence time is compared with LCAs' one demonstrating the efficiency and speed of the algorithm. Meanwhile, the constraints are satisfied after passing only a few iterations.
publishDate 2016
dc.date.none.fl_str_mv 2016-02-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252016000200224
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252016000200224
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1679-78252293
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Ciências Mecânicas
publisher.none.fl_str_mv Associação Brasileira de Ciências Mecânicas
dc.source.none.fl_str_mv Latin American Journal of Solids and Structures v.13 n.2 2016
reponame:Latin American journal of solids and structures (Online)
instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron:ABCM
instname_str Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron_str ABCM
institution ABCM
reponame_str Latin American journal of solids and structures (Online)
collection Latin American journal of solids and structures (Online)
repository.name.fl_str_mv Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
repository.mail.fl_str_mv abcm@abcm.org.br||maralves@usp.br
_version_ 1754302888372338688