Analytical determination of the vibration frequencies and buckling loads of slender reinforced concrete towers
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Latin American journal of solids and structures (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252019000500510 |
Resumo: | Abstract This study focused on improving the design of slender structures with reinforced concrete (RC) telecommunication towers as the main application. Analytical procedure based on Rayleigh’s method to compute the first natural vibration frequency and the critical buckling load was development. All the nonlinearities present in the system were considered, in addition to the soil-structure interaction and the variation of the geometric properties along the length of the structure. The geometric nonlinearity and imperfections of the tower structure were computed as functions of the axial load using a geometric stiffness matrix. Further, the material nonlinearity was accounted for by reducing the flexural stiffness. As concrete structures exhibit viscoelasticity, creep was calculated using the Eurocode 2 model. The soil-structure interaction was modeled as a set of distributed springs. To validate the proposed method, the first frequency and critical buckling load were compared with those yielded by FEM simulations. The frequency results were in good agreement with those of the FEM simulations, indicating that the proposed method is sufficiently accurate for use in engineering design applications and easy to implement. On the other hand, the buckling load results obtained using the proposed method and FEM differed significantly, motivating further investigation. |
id |
ABCM-1_a21d4eaf4e39d11f37e9bfbb3f97ebb6 |
---|---|
oai_identifier_str |
oai:scielo:S1679-78252019000500510 |
network_acronym_str |
ABCM-1 |
network_name_str |
Latin American journal of solids and structures (Online) |
repository_id_str |
|
spelling |
Analytical determination of the vibration frequencies and buckling loads of slender reinforced concrete towersnonlinearitycreepvibrationbucklinganalytical procedurefinite element methodAbstract This study focused on improving the design of slender structures with reinforced concrete (RC) telecommunication towers as the main application. Analytical procedure based on Rayleigh’s method to compute the first natural vibration frequency and the critical buckling load was development. All the nonlinearities present in the system were considered, in addition to the soil-structure interaction and the variation of the geometric properties along the length of the structure. The geometric nonlinearity and imperfections of the tower structure were computed as functions of the axial load using a geometric stiffness matrix. Further, the material nonlinearity was accounted for by reducing the flexural stiffness. As concrete structures exhibit viscoelasticity, creep was calculated using the Eurocode 2 model. The soil-structure interaction was modeled as a set of distributed springs. To validate the proposed method, the first frequency and critical buckling load were compared with those yielded by FEM simulations. The frequency results were in good agreement with those of the FEM simulations, indicating that the proposed method is sufficiently accurate for use in engineering design applications and easy to implement. On the other hand, the buckling load results obtained using the proposed method and FEM differed significantly, motivating further investigation.Associação Brasileira de Ciências Mecânicas2019-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252019000500510Latin American Journal of Solids and Structures v.16 n.5 2019reponame:Latin American journal of solids and structures (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/1679-78255374info:eu-repo/semantics/openAccessWahrhaftig,Alexandre de M.Silva,Marcelo A. daBrasil,Reyolando M. L. R. F.eng2019-06-24T00:00:00Zoai:scielo:S1679-78252019000500510Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=1679-7825&lng=pt&nrm=isohttps://old.scielo.br/oai/scielo-oai.phpabcm@abcm.org.br||maralves@usp.br1679-78251679-7817opendoar:2019-06-24T00:00Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false |
dc.title.none.fl_str_mv |
Analytical determination of the vibration frequencies and buckling loads of slender reinforced concrete towers |
title |
Analytical determination of the vibration frequencies and buckling loads of slender reinforced concrete towers |
spellingShingle |
Analytical determination of the vibration frequencies and buckling loads of slender reinforced concrete towers Wahrhaftig,Alexandre de M. nonlinearity creep vibration buckling analytical procedure finite element method |
title_short |
Analytical determination of the vibration frequencies and buckling loads of slender reinforced concrete towers |
title_full |
Analytical determination of the vibration frequencies and buckling loads of slender reinforced concrete towers |
title_fullStr |
Analytical determination of the vibration frequencies and buckling loads of slender reinforced concrete towers |
title_full_unstemmed |
Analytical determination of the vibration frequencies and buckling loads of slender reinforced concrete towers |
title_sort |
Analytical determination of the vibration frequencies and buckling loads of slender reinforced concrete towers |
author |
Wahrhaftig,Alexandre de M. |
author_facet |
Wahrhaftig,Alexandre de M. Silva,Marcelo A. da Brasil,Reyolando M. L. R. F. |
author_role |
author |
author2 |
Silva,Marcelo A. da Brasil,Reyolando M. L. R. F. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Wahrhaftig,Alexandre de M. Silva,Marcelo A. da Brasil,Reyolando M. L. R. F. |
dc.subject.por.fl_str_mv |
nonlinearity creep vibration buckling analytical procedure finite element method |
topic |
nonlinearity creep vibration buckling analytical procedure finite element method |
description |
Abstract This study focused on improving the design of slender structures with reinforced concrete (RC) telecommunication towers as the main application. Analytical procedure based on Rayleigh’s method to compute the first natural vibration frequency and the critical buckling load was development. All the nonlinearities present in the system were considered, in addition to the soil-structure interaction and the variation of the geometric properties along the length of the structure. The geometric nonlinearity and imperfections of the tower structure were computed as functions of the axial load using a geometric stiffness matrix. Further, the material nonlinearity was accounted for by reducing the flexural stiffness. As concrete structures exhibit viscoelasticity, creep was calculated using the Eurocode 2 model. The soil-structure interaction was modeled as a set of distributed springs. To validate the proposed method, the first frequency and critical buckling load were compared with those yielded by FEM simulations. The frequency results were in good agreement with those of the FEM simulations, indicating that the proposed method is sufficiently accurate for use in engineering design applications and easy to implement. On the other hand, the buckling load results obtained using the proposed method and FEM differed significantly, motivating further investigation. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252019000500510 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252019000500510 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1679-78255374 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Ciências Mecânicas |
publisher.none.fl_str_mv |
Associação Brasileira de Ciências Mecânicas |
dc.source.none.fl_str_mv |
Latin American Journal of Solids and Structures v.16 n.5 2019 reponame:Latin American journal of solids and structures (Online) instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) instacron:ABCM |
instname_str |
Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
instacron_str |
ABCM |
institution |
ABCM |
reponame_str |
Latin American journal of solids and structures (Online) |
collection |
Latin American journal of solids and structures (Online) |
repository.name.fl_str_mv |
Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
repository.mail.fl_str_mv |
abcm@abcm.org.br||maralves@usp.br |
_version_ |
1754302890055303168 |