Optimal design of beam-column connections of plane steel frames using the component method

Detalhes bibliográficos
Autor(a) principal: Hortencio,Rafael da Silva
Data de Publicação: 2018
Outros Autores: Falcón,Gines Arturo Santos
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Latin American journal of solids and structures (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252018001100702
Resumo: Abstract This paper presents a methodology for optimization of beam-column connections of plane steel frames. The objective is to obtain beam- column connections mechanically more efficient and with minimum cost by determination of the optimal dimensions for the components of the connection; satisfying mechanical constraints associated with the bending moment and the rotational stiffness of the connection, without compromising its safety and integrity. Minimum and maximum limits of geometric parameters are considered, according to current regulations. Algorithms were developed to calculate the bending moment and the rotational stiffness of the connection using the “Method of Components” of Eurocode 3. Initially, it was developed a digital database with structural profiles, steel plates and commercial bolts obtained from catalogs of manufacturers, with automatic access of the data by the computational modules of structural analysis and optimization. In the optimization model, it is adopted the connection with extended end plate without stiffeners, the design variables are the dimensions and the thickness of the end plate, the diameter and the location of the bolts. In the optimization process, we use genetic algorithms with continuous and discrete variables, with the discrete variables being associated to the database. In this way, this paper presents a computational tool fully developed in MATLAB® environment for analysis and optimal design of beam-column connections for plane steel frames. Applications that show quite satisfactory results when compared with results available in the literature are presented.
id ABCM-1_aa86b52241f386cb6fd8900f9c4ef779
oai_identifier_str oai:scielo:S1679-78252018001100702
network_acronym_str ABCM-1
network_name_str Latin American journal of solids and structures (Online)
repository_id_str
spelling Optimal design of beam-column connections of plane steel frames using the component methodStructural optimizationSteel beam-column connectionsBolted end-plate connectionsAbstract This paper presents a methodology for optimization of beam-column connections of plane steel frames. The objective is to obtain beam- column connections mechanically more efficient and with minimum cost by determination of the optimal dimensions for the components of the connection; satisfying mechanical constraints associated with the bending moment and the rotational stiffness of the connection, without compromising its safety and integrity. Minimum and maximum limits of geometric parameters are considered, according to current regulations. Algorithms were developed to calculate the bending moment and the rotational stiffness of the connection using the “Method of Components” of Eurocode 3. Initially, it was developed a digital database with structural profiles, steel plates and commercial bolts obtained from catalogs of manufacturers, with automatic access of the data by the computational modules of structural analysis and optimization. In the optimization model, it is adopted the connection with extended end plate without stiffeners, the design variables are the dimensions and the thickness of the end plate, the diameter and the location of the bolts. In the optimization process, we use genetic algorithms with continuous and discrete variables, with the discrete variables being associated to the database. In this way, this paper presents a computational tool fully developed in MATLAB® environment for analysis and optimal design of beam-column connections for plane steel frames. Applications that show quite satisfactory results when compared with results available in the literature are presented.Associação Brasileira de Ciências Mecânicas2018-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252018001100702Latin American Journal of Solids and Structures v.15 n.11 2018reponame:Latin American journal of solids and structures (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/1679-78254247info:eu-repo/semantics/openAccessHortencio,Rafael da SilvaFalcón,Gines Arturo Santoseng2018-10-26T00:00:00Zoai:scielo:S1679-78252018001100702Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=1679-7825&lng=pt&nrm=isohttps://old.scielo.br/oai/scielo-oai.phpabcm@abcm.org.br||maralves@usp.br1679-78251679-7817opendoar:2018-10-26T00:00Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false
dc.title.none.fl_str_mv Optimal design of beam-column connections of plane steel frames using the component method
title Optimal design of beam-column connections of plane steel frames using the component method
spellingShingle Optimal design of beam-column connections of plane steel frames using the component method
Hortencio,Rafael da Silva
Structural optimization
Steel beam-column connections
Bolted end-plate connections
title_short Optimal design of beam-column connections of plane steel frames using the component method
title_full Optimal design of beam-column connections of plane steel frames using the component method
title_fullStr Optimal design of beam-column connections of plane steel frames using the component method
title_full_unstemmed Optimal design of beam-column connections of plane steel frames using the component method
title_sort Optimal design of beam-column connections of plane steel frames using the component method
author Hortencio,Rafael da Silva
author_facet Hortencio,Rafael da Silva
Falcón,Gines Arturo Santos
author_role author
author2 Falcón,Gines Arturo Santos
author2_role author
dc.contributor.author.fl_str_mv Hortencio,Rafael da Silva
Falcón,Gines Arturo Santos
dc.subject.por.fl_str_mv Structural optimization
Steel beam-column connections
Bolted end-plate connections
topic Structural optimization
Steel beam-column connections
Bolted end-plate connections
description Abstract This paper presents a methodology for optimization of beam-column connections of plane steel frames. The objective is to obtain beam- column connections mechanically more efficient and with minimum cost by determination of the optimal dimensions for the components of the connection; satisfying mechanical constraints associated with the bending moment and the rotational stiffness of the connection, without compromising its safety and integrity. Minimum and maximum limits of geometric parameters are considered, according to current regulations. Algorithms were developed to calculate the bending moment and the rotational stiffness of the connection using the “Method of Components” of Eurocode 3. Initially, it was developed a digital database with structural profiles, steel plates and commercial bolts obtained from catalogs of manufacturers, with automatic access of the data by the computational modules of structural analysis and optimization. In the optimization model, it is adopted the connection with extended end plate without stiffeners, the design variables are the dimensions and the thickness of the end plate, the diameter and the location of the bolts. In the optimization process, we use genetic algorithms with continuous and discrete variables, with the discrete variables being associated to the database. In this way, this paper presents a computational tool fully developed in MATLAB® environment for analysis and optimal design of beam-column connections for plane steel frames. Applications that show quite satisfactory results when compared with results available in the literature are presented.
publishDate 2018
dc.date.none.fl_str_mv 2018-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252018001100702
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252018001100702
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1679-78254247
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Ciências Mecânicas
publisher.none.fl_str_mv Associação Brasileira de Ciências Mecânicas
dc.source.none.fl_str_mv Latin American Journal of Solids and Structures v.15 n.11 2018
reponame:Latin American journal of solids and structures (Online)
instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron:ABCM
instname_str Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron_str ABCM
institution ABCM
reponame_str Latin American journal of solids and structures (Online)
collection Latin American journal of solids and structures (Online)
repository.name.fl_str_mv Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
repository.mail.fl_str_mv abcm@abcm.org.br||maralves@usp.br
_version_ 1754302889945202688