Comparison between a linear and cubic fiber angle variation on buckling response of variable angle tow composite panels
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Latin American journal of solids and structures (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252021000600510 |
Resumo: | Abstract Advances in manufacturing techniques have allowed more flexibility to the design and new possibilities to apply composites materials in lightweight structures. Novel techniques such as the automated fiber placement allow the fibers to follow curvilinear paths, making possible laminate properties that vary within the laminate plane. These types of laminates are known as variable stiffness laminates or variable angle tow. In this work, the maximum critical buckling load of composite panels with variable stiffness through a spatially varying fiber orientation has been analyzed for two different boundary conditions. This works compares the outcomes of in-plane stress and critical buckling load for linear and cubic fiber angle considering four aspect ratios. Manufacturing constraint has been considered in the analysis of the laminates. The finite element method has been applied to solve the system elliptic partial differential equations that govern the in-plane behavior of these panels. The Ritz method has been used to find the buckling loads for the variable stiffness panels. Results for four different aspects ratios are presented. Improvements in the buckling load of up to 18% for cubic fiber angle variation over linear fiber angle variation were found. |
id |
ABCM-1_cf3e0c9a282762c2e9d860a56b129af7 |
---|---|
oai_identifier_str |
oai:scielo:S1679-78252021000600510 |
network_acronym_str |
ABCM-1 |
network_name_str |
Latin American journal of solids and structures (Online) |
repository_id_str |
|
spelling |
Comparison between a linear and cubic fiber angle variation on buckling response of variable angle tow composite panelsComposite materialvariable angle tow compositescritical buckling loadin-plane analysisautomated fiber placementAbstract Advances in manufacturing techniques have allowed more flexibility to the design and new possibilities to apply composites materials in lightweight structures. Novel techniques such as the automated fiber placement allow the fibers to follow curvilinear paths, making possible laminate properties that vary within the laminate plane. These types of laminates are known as variable stiffness laminates or variable angle tow. In this work, the maximum critical buckling load of composite panels with variable stiffness through a spatially varying fiber orientation has been analyzed for two different boundary conditions. This works compares the outcomes of in-plane stress and critical buckling load for linear and cubic fiber angle considering four aspect ratios. Manufacturing constraint has been considered in the analysis of the laminates. The finite element method has been applied to solve the system elliptic partial differential equations that govern the in-plane behavior of these panels. The Ritz method has been used to find the buckling loads for the variable stiffness panels. Results for four different aspects ratios are presented. Improvements in the buckling load of up to 18% for cubic fiber angle variation over linear fiber angle variation were found.Associação Brasileira de Ciências Mecânicas2021-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252021000600510Latin American Journal of Solids and Structures v.18 n.6 2021reponame:Latin American journal of solids and structures (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/1679-78256464info:eu-repo/semantics/openAccessLemos,Diego MagelaCimini Jr.,Carlos Albertoeng2021-11-05T00:00:00Zoai:scielo:S1679-78252021000600510Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=1679-7825&lng=pt&nrm=isohttps://old.scielo.br/oai/scielo-oai.phpabcm@abcm.org.br||maralves@usp.br1679-78251679-7817opendoar:2021-11-05T00:00Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false |
dc.title.none.fl_str_mv |
Comparison between a linear and cubic fiber angle variation on buckling response of variable angle tow composite panels |
title |
Comparison between a linear and cubic fiber angle variation on buckling response of variable angle tow composite panels |
spellingShingle |
Comparison between a linear and cubic fiber angle variation on buckling response of variable angle tow composite panels Lemos,Diego Magela Composite material variable angle tow composites critical buckling load in-plane analysis automated fiber placement |
title_short |
Comparison between a linear and cubic fiber angle variation on buckling response of variable angle tow composite panels |
title_full |
Comparison between a linear and cubic fiber angle variation on buckling response of variable angle tow composite panels |
title_fullStr |
Comparison between a linear and cubic fiber angle variation on buckling response of variable angle tow composite panels |
title_full_unstemmed |
Comparison between a linear and cubic fiber angle variation on buckling response of variable angle tow composite panels |
title_sort |
Comparison between a linear and cubic fiber angle variation on buckling response of variable angle tow composite panels |
author |
Lemos,Diego Magela |
author_facet |
Lemos,Diego Magela Cimini Jr.,Carlos Alberto |
author_role |
author |
author2 |
Cimini Jr.,Carlos Alberto |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Lemos,Diego Magela Cimini Jr.,Carlos Alberto |
dc.subject.por.fl_str_mv |
Composite material variable angle tow composites critical buckling load in-plane analysis automated fiber placement |
topic |
Composite material variable angle tow composites critical buckling load in-plane analysis automated fiber placement |
description |
Abstract Advances in manufacturing techniques have allowed more flexibility to the design and new possibilities to apply composites materials in lightweight structures. Novel techniques such as the automated fiber placement allow the fibers to follow curvilinear paths, making possible laminate properties that vary within the laminate plane. These types of laminates are known as variable stiffness laminates or variable angle tow. In this work, the maximum critical buckling load of composite panels with variable stiffness through a spatially varying fiber orientation has been analyzed for two different boundary conditions. This works compares the outcomes of in-plane stress and critical buckling load for linear and cubic fiber angle considering four aspect ratios. Manufacturing constraint has been considered in the analysis of the laminates. The finite element method has been applied to solve the system elliptic partial differential equations that govern the in-plane behavior of these panels. The Ritz method has been used to find the buckling loads for the variable stiffness panels. Results for four different aspects ratios are presented. Improvements in the buckling load of up to 18% for cubic fiber angle variation over linear fiber angle variation were found. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252021000600510 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252021000600510 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1679-78256464 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Ciências Mecânicas |
publisher.none.fl_str_mv |
Associação Brasileira de Ciências Mecânicas |
dc.source.none.fl_str_mv |
Latin American Journal of Solids and Structures v.18 n.6 2021 reponame:Latin American journal of solids and structures (Online) instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) instacron:ABCM |
instname_str |
Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
instacron_str |
ABCM |
institution |
ABCM |
reponame_str |
Latin American journal of solids and structures (Online) |
collection |
Latin American journal of solids and structures (Online) |
repository.name.fl_str_mv |
Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
repository.mail.fl_str_mv |
abcm@abcm.org.br||maralves@usp.br |
_version_ |
1754302890818666496 |