Performance of infill stiffened steel panel against blast loading

Detalhes bibliográficos
Autor(a) principal: Ostadhossein,Hassan
Data de Publicação: 2018
Outros Autores: Lotfi,Saeid
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Latin American journal of solids and structures (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252018000200505
Resumo: Abstract In blast loading, out-of-plane behavior of infill wall is activated initially. Contrary to other types of infill wall such as brick or concrete wall, infill steel plate wall exhibits more ductility. Since blast impulsive loading suddenly exerts a large amount of kinematic energy to infill wall, energy absorption characteristic of the infill wall should be taken into account, especially for protection of vulnerable buildings. Out-of-plane ductility of infill steel plate reduces the transmitted impulsive loading to the structure. In present study, out-of-plane behavior of infill steel panel has been studied as a sacrificial element. In-plane behavior of infill steel panel is also investigated as a lateral bearing system. In-plane action should satisfy both resistance and performance criteria. In this research, finite element analysis, including geometric and material nonlinearities is used for optimization of the steel plate thickness and stiffeners arrangement to obtain more efficient design for out-of-plane and in-plane actions. The results of analyses show that for out-of-plane action, the plate thickness and stiffeners arrangement can be determined such that on one hand, the impulse transmission can be minimized, and on the other hand, the maximum residual deformation can be limited to the predefined damage level. Additionally, the effect of stiffener arrangement on the performance of in-plane are studied and some practical rules have been derived for designing the infill steel panel against blast.
id ABCM-1_d5accda63a56c497a85e918e4354818d
oai_identifier_str oai:scielo:S1679-78252018000200505
network_acronym_str ABCM-1
network_name_str Latin American journal of solids and structures (Online)
repository_id_str
spelling Performance of infill stiffened steel panel against blast loadingblast loadingin-fill stiffened steel panelductilityperformance leveltransmitted impulseplate bucklingAbstract In blast loading, out-of-plane behavior of infill wall is activated initially. Contrary to other types of infill wall such as brick or concrete wall, infill steel plate wall exhibits more ductility. Since blast impulsive loading suddenly exerts a large amount of kinematic energy to infill wall, energy absorption characteristic of the infill wall should be taken into account, especially for protection of vulnerable buildings. Out-of-plane ductility of infill steel plate reduces the transmitted impulsive loading to the structure. In present study, out-of-plane behavior of infill steel panel has been studied as a sacrificial element. In-plane behavior of infill steel panel is also investigated as a lateral bearing system. In-plane action should satisfy both resistance and performance criteria. In this research, finite element analysis, including geometric and material nonlinearities is used for optimization of the steel plate thickness and stiffeners arrangement to obtain more efficient design for out-of-plane and in-plane actions. The results of analyses show that for out-of-plane action, the plate thickness and stiffeners arrangement can be determined such that on one hand, the impulse transmission can be minimized, and on the other hand, the maximum residual deformation can be limited to the predefined damage level. Additionally, the effect of stiffener arrangement on the performance of in-plane are studied and some practical rules have been derived for designing the infill steel panel against blast.Associação Brasileira de Ciências Mecânicas2018-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252018000200505Latin American Journal of Solids and Structures v.15 n.2 2018reponame:Latin American journal of solids and structures (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/1679-78254429info:eu-repo/semantics/openAccessOstadhossein,HassanLotfi,Saeideng2018-09-13T00:00:00Zoai:scielo:S1679-78252018000200505Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=1679-7825&lng=pt&nrm=isohttps://old.scielo.br/oai/scielo-oai.phpabcm@abcm.org.br||maralves@usp.br1679-78251679-7817opendoar:2018-09-13T00:00Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false
dc.title.none.fl_str_mv Performance of infill stiffened steel panel against blast loading
title Performance of infill stiffened steel panel against blast loading
spellingShingle Performance of infill stiffened steel panel against blast loading
Ostadhossein,Hassan
blast loading
in-fill stiffened steel panel
ductility
performance level
transmitted impulse
plate buckling
title_short Performance of infill stiffened steel panel against blast loading
title_full Performance of infill stiffened steel panel against blast loading
title_fullStr Performance of infill stiffened steel panel against blast loading
title_full_unstemmed Performance of infill stiffened steel panel against blast loading
title_sort Performance of infill stiffened steel panel against blast loading
author Ostadhossein,Hassan
author_facet Ostadhossein,Hassan
Lotfi,Saeid
author_role author
author2 Lotfi,Saeid
author2_role author
dc.contributor.author.fl_str_mv Ostadhossein,Hassan
Lotfi,Saeid
dc.subject.por.fl_str_mv blast loading
in-fill stiffened steel panel
ductility
performance level
transmitted impulse
plate buckling
topic blast loading
in-fill stiffened steel panel
ductility
performance level
transmitted impulse
plate buckling
description Abstract In blast loading, out-of-plane behavior of infill wall is activated initially. Contrary to other types of infill wall such as brick or concrete wall, infill steel plate wall exhibits more ductility. Since blast impulsive loading suddenly exerts a large amount of kinematic energy to infill wall, energy absorption characteristic of the infill wall should be taken into account, especially for protection of vulnerable buildings. Out-of-plane ductility of infill steel plate reduces the transmitted impulsive loading to the structure. In present study, out-of-plane behavior of infill steel panel has been studied as a sacrificial element. In-plane behavior of infill steel panel is also investigated as a lateral bearing system. In-plane action should satisfy both resistance and performance criteria. In this research, finite element analysis, including geometric and material nonlinearities is used for optimization of the steel plate thickness and stiffeners arrangement to obtain more efficient design for out-of-plane and in-plane actions. The results of analyses show that for out-of-plane action, the plate thickness and stiffeners arrangement can be determined such that on one hand, the impulse transmission can be minimized, and on the other hand, the maximum residual deformation can be limited to the predefined damage level. Additionally, the effect of stiffener arrangement on the performance of in-plane are studied and some practical rules have been derived for designing the infill steel panel against blast.
publishDate 2018
dc.date.none.fl_str_mv 2018-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252018000200505
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252018000200505
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1679-78254429
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Ciências Mecânicas
publisher.none.fl_str_mv Associação Brasileira de Ciências Mecânicas
dc.source.none.fl_str_mv Latin American Journal of Solids and Structures v.15 n.2 2018
reponame:Latin American journal of solids and structures (Online)
instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron:ABCM
instname_str Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron_str ABCM
institution ABCM
reponame_str Latin American journal of solids and structures (Online)
collection Latin American journal of solids and structures (Online)
repository.name.fl_str_mv Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
repository.mail.fl_str_mv abcm@abcm.org.br||maralves@usp.br
_version_ 1754302889308717056