Buckling of cracked cones subjected to axial compression
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Latin American journal of solids and structures (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252020000900501 |
Resumo: | Abstract The influence of crack geometry on the buckling load of axially compressed mild steel cones was presented in this paper. The following geometrical parameter was used: bottom radius-to-top radius ratio, r2/r1=2.0; top radius-to-thickness ratio, r1/t=25; axial length-to-bottom radius ratio, L/r2=2.24; nominal shell thickness, t=1mm; cone angle, β=12.6°. The local buckling phenomenon was investigated through a series of numerical computations (50 ≤ r1/t ≤ 2000). Numerical results show that crack geometry (i.e., length and orientation) influences the buckling strength of the cones differently. For instance, as the crack length increases, the loading capacity of cones drops; cones with a circumferential crack (0°) display the most severe drop. As the crack orientation increases (from 0° to 90°) the buckling strength of the cracked cones with crack length greater than 1 increases. Whereas, for cracked cones with crack length less than 1, increasing the crack orientation has little or no effect on the buckling strength. Hence, it can be said that crack orientation has a secondary effect on the buckling of cracked conical shells. |
id |
ABCM-1_e792837ffa407e9733d08490f2b0d24a |
---|---|
oai_identifier_str |
oai:scielo:S1679-78252020000900501 |
network_acronym_str |
ABCM-1 |
network_name_str |
Latin American journal of solids and structures (Online) |
repository_id_str |
|
spelling |
Buckling of cracked cones subjected to axial compressionAxial compressionbucklingcracked conical shellfinite element methodmesh-zooming techniqueAbstract The influence of crack geometry on the buckling load of axially compressed mild steel cones was presented in this paper. The following geometrical parameter was used: bottom radius-to-top radius ratio, r2/r1=2.0; top radius-to-thickness ratio, r1/t=25; axial length-to-bottom radius ratio, L/r2=2.24; nominal shell thickness, t=1mm; cone angle, β=12.6°. The local buckling phenomenon was investigated through a series of numerical computations (50 ≤ r1/t ≤ 2000). Numerical results show that crack geometry (i.e., length and orientation) influences the buckling strength of the cones differently. For instance, as the crack length increases, the loading capacity of cones drops; cones with a circumferential crack (0°) display the most severe drop. As the crack orientation increases (from 0° to 90°) the buckling strength of the cracked cones with crack length greater than 1 increases. Whereas, for cracked cones with crack length less than 1, increasing the crack orientation has little or no effect on the buckling strength. Hence, it can be said that crack orientation has a secondary effect on the buckling of cracked conical shells.Associação Brasileira de Ciências Mecânicas2020-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252020000900501Latin American Journal of Solids and Structures v.17 n.9 2020reponame:Latin American journal of solids and structures (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/1679-78256241info:eu-repo/semantics/openAccessIfayefunmi,O.Mahidan,F.M.eng2020-12-08T00:00:00Zoai:scielo:S1679-78252020000900501Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=1679-7825&lng=pt&nrm=isohttps://old.scielo.br/oai/scielo-oai.phpabcm@abcm.org.br||maralves@usp.br1679-78251679-7817opendoar:2020-12-08T00:00Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false |
dc.title.none.fl_str_mv |
Buckling of cracked cones subjected to axial compression |
title |
Buckling of cracked cones subjected to axial compression |
spellingShingle |
Buckling of cracked cones subjected to axial compression Ifayefunmi,O. Axial compression buckling cracked conical shell finite element method mesh-zooming technique |
title_short |
Buckling of cracked cones subjected to axial compression |
title_full |
Buckling of cracked cones subjected to axial compression |
title_fullStr |
Buckling of cracked cones subjected to axial compression |
title_full_unstemmed |
Buckling of cracked cones subjected to axial compression |
title_sort |
Buckling of cracked cones subjected to axial compression |
author |
Ifayefunmi,O. |
author_facet |
Ifayefunmi,O. Mahidan,F.M. |
author_role |
author |
author2 |
Mahidan,F.M. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Ifayefunmi,O. Mahidan,F.M. |
dc.subject.por.fl_str_mv |
Axial compression buckling cracked conical shell finite element method mesh-zooming technique |
topic |
Axial compression buckling cracked conical shell finite element method mesh-zooming technique |
description |
Abstract The influence of crack geometry on the buckling load of axially compressed mild steel cones was presented in this paper. The following geometrical parameter was used: bottom radius-to-top radius ratio, r2/r1=2.0; top radius-to-thickness ratio, r1/t=25; axial length-to-bottom radius ratio, L/r2=2.24; nominal shell thickness, t=1mm; cone angle, β=12.6°. The local buckling phenomenon was investigated through a series of numerical computations (50 ≤ r1/t ≤ 2000). Numerical results show that crack geometry (i.e., length and orientation) influences the buckling strength of the cones differently. For instance, as the crack length increases, the loading capacity of cones drops; cones with a circumferential crack (0°) display the most severe drop. As the crack orientation increases (from 0° to 90°) the buckling strength of the cracked cones with crack length greater than 1 increases. Whereas, for cracked cones with crack length less than 1, increasing the crack orientation has little or no effect on the buckling strength. Hence, it can be said that crack orientation has a secondary effect on the buckling of cracked conical shells. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252020000900501 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252020000900501 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1679-78256241 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Ciências Mecânicas |
publisher.none.fl_str_mv |
Associação Brasileira de Ciências Mecânicas |
dc.source.none.fl_str_mv |
Latin American Journal of Solids and Structures v.17 n.9 2020 reponame:Latin American journal of solids and structures (Online) instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) instacron:ABCM |
instname_str |
Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
instacron_str |
ABCM |
institution |
ABCM |
reponame_str |
Latin American journal of solids and structures (Online) |
collection |
Latin American journal of solids and structures (Online) |
repository.name.fl_str_mv |
Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
repository.mail.fl_str_mv |
abcm@abcm.org.br||maralves@usp.br |
_version_ |
1754302890714857472 |