Experimental study on granite and the determination of its true strain-rate effect

Detalhes bibliográficos
Autor(a) principal: Cai,Yong
Data de Publicação: 2015
Outros Autores: Yu,Shuisheng, Lu,Yubin
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Latin American journal of solids and structures (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252015000400675
Resumo: To accurately determine the true strain-rate effect of granite in split Hopkinson pressure bar (SHPB) tests, systematic experimental studies from quasi-static to dynamic loading on the same batch of granite samples is required. Therefore, firstly, splitting, uniaxial and triaxial compression tests were used to study the mechanical response of granite under different static stress conditions with the MTS rock mechanics test system, and the impact compression tests were performed at different strain-rates by the split Hopkinson pressure bar (SHPB). The test results show that the compressive strength increases with the increase of confinement, but the increase rate decreases as the confinement gets larger. The axial failure strain also increases with the increase of confinement. Failure is related to the composition and structure of granite, as well as the stress state. With increasing confinement, the sample is more constrained, the elastic limit strain becomes smaller, and the elastic modulus becomes larger accordingly. In addition, shear slip failure takes place under triaxial compression. In the dynamic compression tests, the strain-rate affects not only the strength of granite, but also the degree of fragmentation and the breaking pattern. Also, it has been found that the dynamic compressive strength enhancement of rocks under impact loading is due to the combined effects of the material strain-rate, lateral inertia and end friction; however, in SHPB tests they are coupled together and could not be separated from each other. To determine the material strain-rate effect of rocks in the SHPB tests, the dynamic compressive strength enhancement caused by the lateral inertial effect and end friction effect needs to be removed. Assuming that the effect of the material strain-rate, lateral inertia and end friction is uncoupled, the numerical simulation method has been employed to simulate the SHPB tests on granite. The true strain-rate effect of granite in SHPB tests is thus determined.
id ABCM-1_fdccf6a0ab2461d64f68cfdecf1c6bca
oai_identifier_str oai:scielo:S1679-78252015000400675
network_acronym_str ABCM-1
network_name_str Latin American journal of solids and structures (Online)
repository_id_str
spelling Experimental study on granite and the determination of its true strain-rate effectGraniteconfinementstrain-rate effectlateral inertial effectend friction effectSHPB test damage toleranceWeibull distributionTo accurately determine the true strain-rate effect of granite in split Hopkinson pressure bar (SHPB) tests, systematic experimental studies from quasi-static to dynamic loading on the same batch of granite samples is required. Therefore, firstly, splitting, uniaxial and triaxial compression tests were used to study the mechanical response of granite under different static stress conditions with the MTS rock mechanics test system, and the impact compression tests were performed at different strain-rates by the split Hopkinson pressure bar (SHPB). The test results show that the compressive strength increases with the increase of confinement, but the increase rate decreases as the confinement gets larger. The axial failure strain also increases with the increase of confinement. Failure is related to the composition and structure of granite, as well as the stress state. With increasing confinement, the sample is more constrained, the elastic limit strain becomes smaller, and the elastic modulus becomes larger accordingly. In addition, shear slip failure takes place under triaxial compression. In the dynamic compression tests, the strain-rate affects not only the strength of granite, but also the degree of fragmentation and the breaking pattern. Also, it has been found that the dynamic compressive strength enhancement of rocks under impact loading is due to the combined effects of the material strain-rate, lateral inertia and end friction; however, in SHPB tests they are coupled together and could not be separated from each other. To determine the material strain-rate effect of rocks in the SHPB tests, the dynamic compressive strength enhancement caused by the lateral inertial effect and end friction effect needs to be removed. Assuming that the effect of the material strain-rate, lateral inertia and end friction is uncoupled, the numerical simulation method has been employed to simulate the SHPB tests on granite. The true strain-rate effect of granite in SHPB tests is thus determined.Associação Brasileira de Ciências Mecânicas2015-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252015000400675Latin American Journal of Solids and Structures v.12 n.4 2015reponame:Latin American journal of solids and structures (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/1679-78251331info:eu-repo/semantics/openAccessCai,YongYu,ShuishengLu,Yubineng2015-09-24T00:00:00Zoai:scielo:S1679-78252015000400675Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=1679-7825&lng=pt&nrm=isohttps://old.scielo.br/oai/scielo-oai.phpabcm@abcm.org.br||maralves@usp.br1679-78251679-7817opendoar:2015-09-24T00:00Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false
dc.title.none.fl_str_mv Experimental study on granite and the determination of its true strain-rate effect
title Experimental study on granite and the determination of its true strain-rate effect
spellingShingle Experimental study on granite and the determination of its true strain-rate effect
Cai,Yong
Granite
confinement
strain-rate effect
lateral inertial effect
end friction effect
SHPB test damage tolerance
Weibull distribution
title_short Experimental study on granite and the determination of its true strain-rate effect
title_full Experimental study on granite and the determination of its true strain-rate effect
title_fullStr Experimental study on granite and the determination of its true strain-rate effect
title_full_unstemmed Experimental study on granite and the determination of its true strain-rate effect
title_sort Experimental study on granite and the determination of its true strain-rate effect
author Cai,Yong
author_facet Cai,Yong
Yu,Shuisheng
Lu,Yubin
author_role author
author2 Yu,Shuisheng
Lu,Yubin
author2_role author
author
dc.contributor.author.fl_str_mv Cai,Yong
Yu,Shuisheng
Lu,Yubin
dc.subject.por.fl_str_mv Granite
confinement
strain-rate effect
lateral inertial effect
end friction effect
SHPB test damage tolerance
Weibull distribution
topic Granite
confinement
strain-rate effect
lateral inertial effect
end friction effect
SHPB test damage tolerance
Weibull distribution
description To accurately determine the true strain-rate effect of granite in split Hopkinson pressure bar (SHPB) tests, systematic experimental studies from quasi-static to dynamic loading on the same batch of granite samples is required. Therefore, firstly, splitting, uniaxial and triaxial compression tests were used to study the mechanical response of granite under different static stress conditions with the MTS rock mechanics test system, and the impact compression tests were performed at different strain-rates by the split Hopkinson pressure bar (SHPB). The test results show that the compressive strength increases with the increase of confinement, but the increase rate decreases as the confinement gets larger. The axial failure strain also increases with the increase of confinement. Failure is related to the composition and structure of granite, as well as the stress state. With increasing confinement, the sample is more constrained, the elastic limit strain becomes smaller, and the elastic modulus becomes larger accordingly. In addition, shear slip failure takes place under triaxial compression. In the dynamic compression tests, the strain-rate affects not only the strength of granite, but also the degree of fragmentation and the breaking pattern. Also, it has been found that the dynamic compressive strength enhancement of rocks under impact loading is due to the combined effects of the material strain-rate, lateral inertia and end friction; however, in SHPB tests they are coupled together and could not be separated from each other. To determine the material strain-rate effect of rocks in the SHPB tests, the dynamic compressive strength enhancement caused by the lateral inertial effect and end friction effect needs to be removed. Assuming that the effect of the material strain-rate, lateral inertia and end friction is uncoupled, the numerical simulation method has been employed to simulate the SHPB tests on granite. The true strain-rate effect of granite in SHPB tests is thus determined.
publishDate 2015
dc.date.none.fl_str_mv 2015-08-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252015000400675
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1679-78252015000400675
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1679-78251331
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Ciências Mecânicas
publisher.none.fl_str_mv Associação Brasileira de Ciências Mecânicas
dc.source.none.fl_str_mv Latin American Journal of Solids and Structures v.12 n.4 2015
reponame:Latin American journal of solids and structures (Online)
instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron:ABCM
instname_str Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron_str ABCM
institution ABCM
reponame_str Latin American journal of solids and structures (Online)
collection Latin American journal of solids and structures (Online)
repository.name.fl_str_mv Latin American journal of solids and structures (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
repository.mail.fl_str_mv abcm@abcm.org.br||maralves@usp.br
_version_ 1754302887982268416