Mixed convection heat transfer in rotating vertical elliptic ducts

Detalhes bibliográficos
Autor(a) principal: Lasode,Olumuyiwa A.
Data de Publicação: 2007
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782007000200003
Resumo: This paper presents an investigation into the solution of laminar mixed convective heat transfer in vertical elliptic ducts containing an upward flowing fluid rotating about a parallel axis. The coupled system of normalized conservation equations are solved using a power series expansion in ascending powers of rotational Rayleigh Number, Ratau - a measure of the rate of heating and rotation as the perturbation parameter. The results show the influence of rotational Rayleigh number, Ratau and modified Reynolds number, Re m on the temperature and axial velocity fields. The effect of Prandtl number, Pr, in the range 1 to 5, and eccentricity, e on the peripheral local Nusselt number are also reported. The mean Nusselt number is observed to be highest at duct eccentricity, e=0 for a given Prandtl number. However, results indicate insensitivity of peripheral local Nusselt number to Prandtl number at eccentricity, e=0.866, which is an important result to a designer of rotating vertical heat exchanger. The effect of eccentricity on the friction coefficient is also presented. The parameter space for the overall validity of the results presented is Ratau Re mPr<820.
id ABCM-2_2d941b18a8b59d0e8cc204e24c5edd8c
oai_identifier_str oai:scielo:S1678-58782007000200003
network_acronym_str ABCM-2
network_name_str Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
repository_id_str
spelling Mixed convection heat transfer in rotating vertical elliptic ductsmixed convectionrotationelliptic ductsThis paper presents an investigation into the solution of laminar mixed convective heat transfer in vertical elliptic ducts containing an upward flowing fluid rotating about a parallel axis. The coupled system of normalized conservation equations are solved using a power series expansion in ascending powers of rotational Rayleigh Number, Ratau - a measure of the rate of heating and rotation as the perturbation parameter. The results show the influence of rotational Rayleigh number, Ratau and modified Reynolds number, Re m on the temperature and axial velocity fields. The effect of Prandtl number, Pr, in the range 1 to 5, and eccentricity, e on the peripheral local Nusselt number are also reported. The mean Nusselt number is observed to be highest at duct eccentricity, e=0 for a given Prandtl number. However, results indicate insensitivity of peripheral local Nusselt number to Prandtl number at eccentricity, e=0.866, which is an important result to a designer of rotating vertical heat exchanger. The effect of eccentricity on the friction coefficient is also presented. The parameter space for the overall validity of the results presented is Ratau Re mPr<820.Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM2007-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782007000200003Journal of the Brazilian Society of Mechanical Sciences and Engineering v.29 n.2 2007reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/S1678-58782007000200003info:eu-repo/semantics/openAccessLasode,Olumuyiwa A.eng2007-09-03T00:00:00Zoai:scielo:S1678-58782007000200003Revistahttps://www.scielo.br/j/jbsmse/https://old.scielo.br/oai/scielo-oai.php||abcm@abcm.org.br1806-36911678-5878opendoar:2007-09-03T00:00Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false
dc.title.none.fl_str_mv Mixed convection heat transfer in rotating vertical elliptic ducts
title Mixed convection heat transfer in rotating vertical elliptic ducts
spellingShingle Mixed convection heat transfer in rotating vertical elliptic ducts
Lasode,Olumuyiwa A.
mixed convection
rotation
elliptic ducts
title_short Mixed convection heat transfer in rotating vertical elliptic ducts
title_full Mixed convection heat transfer in rotating vertical elliptic ducts
title_fullStr Mixed convection heat transfer in rotating vertical elliptic ducts
title_full_unstemmed Mixed convection heat transfer in rotating vertical elliptic ducts
title_sort Mixed convection heat transfer in rotating vertical elliptic ducts
author Lasode,Olumuyiwa A.
author_facet Lasode,Olumuyiwa A.
author_role author
dc.contributor.author.fl_str_mv Lasode,Olumuyiwa A.
dc.subject.por.fl_str_mv mixed convection
rotation
elliptic ducts
topic mixed convection
rotation
elliptic ducts
description This paper presents an investigation into the solution of laminar mixed convective heat transfer in vertical elliptic ducts containing an upward flowing fluid rotating about a parallel axis. The coupled system of normalized conservation equations are solved using a power series expansion in ascending powers of rotational Rayleigh Number, Ratau - a measure of the rate of heating and rotation as the perturbation parameter. The results show the influence of rotational Rayleigh number, Ratau and modified Reynolds number, Re m on the temperature and axial velocity fields. The effect of Prandtl number, Pr, in the range 1 to 5, and eccentricity, e on the peripheral local Nusselt number are also reported. The mean Nusselt number is observed to be highest at duct eccentricity, e=0 for a given Prandtl number. However, results indicate insensitivity of peripheral local Nusselt number to Prandtl number at eccentricity, e=0.866, which is an important result to a designer of rotating vertical heat exchanger. The effect of eccentricity on the friction coefficient is also presented. The parameter space for the overall validity of the results presented is Ratau Re mPr<820.
publishDate 2007
dc.date.none.fl_str_mv 2007-06-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782007000200003
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782007000200003
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1678-58782007000200003
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM
publisher.none.fl_str_mv Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM
dc.source.none.fl_str_mv Journal of the Brazilian Society of Mechanical Sciences and Engineering v.29 n.2 2007
reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron:ABCM
instname_str Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron_str ABCM
institution ABCM
reponame_str Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
collection Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
repository.name.fl_str_mv Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
repository.mail.fl_str_mv ||abcm@abcm.org.br
_version_ 1754734680941264896