µ-synthesis for unmanned underwater vehicles current disturbance rejection

Detalhes bibliográficos
Autor(a) principal: Souza,Eric Conrado de
Data de Publicação: 2011
Outros Autores: Maruyama,Newton
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782011000300012
Resumo: This note focuses attention on a novel approach to disturbance rejection when the µ-synthesis control procedure is applied to Unmanned Underwater Vehicles (UUVs). Environmental external disturbances simplify to ocean current for a totally submerged vehicle and greatly contributes for hydrodynamical loads and the tether cable disturbance. Our case scenario deals with the incorporation of the sea current disturbance to the plant model employed for control design. In the proposed design method, we substitute the structured unmodeled dynamics uncertainty, which is generally difficult to come up with and eventually utilized to represent external disturbances, by parametric uncertainty, relatively easier and straightforward to come by. The sea-current load parameters are, therefore, treated as parametric uncertainty and fit in the µ design framework. Assuming that both vehicle motion and current direction lie in the horizontal plane, the incoming (to vehicle) current vector sets a horizontal circumference sector in which it may vary. When in the 3D space, current uncertainty renders a cone in space. For validation purposes, the linear controller is simulated with the nonlinear vehicle model.
id ABCM-2_52b2b8120bf0811764b52a24fb435f04
oai_identifier_str oai:scielo:S1678-58782011000300012
network_acronym_str ABCM-2
network_name_str Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
repository_id_str
spelling µ-synthesis for unmanned underwater vehicles current disturbance rejectionmobile robotsrobust controlnonlinear control systemsThis note focuses attention on a novel approach to disturbance rejection when the µ-synthesis control procedure is applied to Unmanned Underwater Vehicles (UUVs). Environmental external disturbances simplify to ocean current for a totally submerged vehicle and greatly contributes for hydrodynamical loads and the tether cable disturbance. Our case scenario deals with the incorporation of the sea current disturbance to the plant model employed for control design. In the proposed design method, we substitute the structured unmodeled dynamics uncertainty, which is generally difficult to come up with and eventually utilized to represent external disturbances, by parametric uncertainty, relatively easier and straightforward to come by. The sea-current load parameters are, therefore, treated as parametric uncertainty and fit in the µ design framework. Assuming that both vehicle motion and current direction lie in the horizontal plane, the incoming (to vehicle) current vector sets a horizontal circumference sector in which it may vary. When in the 3D space, current uncertainty renders a cone in space. For validation purposes, the linear controller is simulated with the nonlinear vehicle model.Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM2011-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782011000300012Journal of the Brazilian Society of Mechanical Sciences and Engineering v.33 n.3 2011reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/S1678-58782011000300012info:eu-repo/semantics/openAccessSouza,Eric Conrado deMaruyama,Newtoneng2011-12-06T00:00:00Zoai:scielo:S1678-58782011000300012Revistahttps://www.scielo.br/j/jbsmse/https://old.scielo.br/oai/scielo-oai.php||abcm@abcm.org.br1806-36911678-5878opendoar:2011-12-06T00:00Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false
dc.title.none.fl_str_mv µ-synthesis for unmanned underwater vehicles current disturbance rejection
title µ-synthesis for unmanned underwater vehicles current disturbance rejection
spellingShingle µ-synthesis for unmanned underwater vehicles current disturbance rejection
Souza,Eric Conrado de
mobile robots
robust control
nonlinear control systems
title_short µ-synthesis for unmanned underwater vehicles current disturbance rejection
title_full µ-synthesis for unmanned underwater vehicles current disturbance rejection
title_fullStr µ-synthesis for unmanned underwater vehicles current disturbance rejection
title_full_unstemmed µ-synthesis for unmanned underwater vehicles current disturbance rejection
title_sort µ-synthesis for unmanned underwater vehicles current disturbance rejection
author Souza,Eric Conrado de
author_facet Souza,Eric Conrado de
Maruyama,Newton
author_role author
author2 Maruyama,Newton
author2_role author
dc.contributor.author.fl_str_mv Souza,Eric Conrado de
Maruyama,Newton
dc.subject.por.fl_str_mv mobile robots
robust control
nonlinear control systems
topic mobile robots
robust control
nonlinear control systems
description This note focuses attention on a novel approach to disturbance rejection when the µ-synthesis control procedure is applied to Unmanned Underwater Vehicles (UUVs). Environmental external disturbances simplify to ocean current for a totally submerged vehicle and greatly contributes for hydrodynamical loads and the tether cable disturbance. Our case scenario deals with the incorporation of the sea current disturbance to the plant model employed for control design. In the proposed design method, we substitute the structured unmodeled dynamics uncertainty, which is generally difficult to come up with and eventually utilized to represent external disturbances, by parametric uncertainty, relatively easier and straightforward to come by. The sea-current load parameters are, therefore, treated as parametric uncertainty and fit in the µ design framework. Assuming that both vehicle motion and current direction lie in the horizontal plane, the incoming (to vehicle) current vector sets a horizontal circumference sector in which it may vary. When in the 3D space, current uncertainty renders a cone in space. For validation purposes, the linear controller is simulated with the nonlinear vehicle model.
publishDate 2011
dc.date.none.fl_str_mv 2011-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782011000300012
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782011000300012
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1678-58782011000300012
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM
publisher.none.fl_str_mv Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM
dc.source.none.fl_str_mv Journal of the Brazilian Society of Mechanical Sciences and Engineering v.33 n.3 2011
reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron:ABCM
instname_str Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron_str ABCM
institution ABCM
reponame_str Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
collection Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
repository.name.fl_str_mv Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
repository.mail.fl_str_mv ||abcm@abcm.org.br
_version_ 1754734681916440576