Kinematical modeling and optimal design of a biped robot joint parallel linkage
Autor(a) principal: | |
---|---|
Data de Publicação: | 2006 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782006000400016 |
Resumo: | This paper shows the design and analysis of a parallel three-dimensional linkage, conceived to work as the ankle and hip joints of an anthropometric biped robot. This kind of mechanism architecture provides low-weight, highly stable assemblies, and allows the use of actuator synergies. On the other hand, the mechanical transmission ratio is not usually favorable, and a non-linear kinematic model has to be derived and solved. The mechanism proposed here is driven by two rotational servo-actuators, and allows the joint to follow a specified angular trajectory determined by the gait pattern. Namely, the joint linkage can generate dorsi/plantar flexion and inversion/eversion of the ankle, and hip flexion/extension and adduction/abduction movements. Several approaches to the direct and inverse kinematical modeling of the linkage are presented and compared, regarding their accuracy and computational cost, where the last performance parameter is closely related to on-line computer implementing of the controller. Strategies to fit current gait angular amplitudes into the linkage workspace, as well as singularity analysis, are discussed. An optimization method was applied to find some geometrical design parameters of the linkage that minimizes a cost function. This function is the mean transmission ratio between the motor inputs and the joint output torques over a predefined dominion. The minimization is constrained to a minimum workspace area value and to minimum and maximum values of the design parameters. Several design solutions were generated. The chosen was one where the workspace is compatible to the gait amplitude requirements and that exhibits the lowest cost function. A biped robot using the linkage geometry designed in this paper has been built and tested with real human gait data acquired in a gait lab. |
id |
ABCM-2_5c3c7fcefca0ebf374316560190419da |
---|---|
oai_identifier_str |
oai:scielo:S1678-58782006000400016 |
network_acronym_str |
ABCM-2 |
network_name_str |
Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) |
repository_id_str |
|
spelling |
Kinematical modeling and optimal design of a biped robot joint parallel linkageParallel linkagemechanismsgait analysisbiped robotoptimal designThis paper shows the design and analysis of a parallel three-dimensional linkage, conceived to work as the ankle and hip joints of an anthropometric biped robot. This kind of mechanism architecture provides low-weight, highly stable assemblies, and allows the use of actuator synergies. On the other hand, the mechanical transmission ratio is not usually favorable, and a non-linear kinematic model has to be derived and solved. The mechanism proposed here is driven by two rotational servo-actuators, and allows the joint to follow a specified angular trajectory determined by the gait pattern. Namely, the joint linkage can generate dorsi/plantar flexion and inversion/eversion of the ankle, and hip flexion/extension and adduction/abduction movements. Several approaches to the direct and inverse kinematical modeling of the linkage are presented and compared, regarding their accuracy and computational cost, where the last performance parameter is closely related to on-line computer implementing of the controller. Strategies to fit current gait angular amplitudes into the linkage workspace, as well as singularity analysis, are discussed. An optimization method was applied to find some geometrical design parameters of the linkage that minimizes a cost function. This function is the mean transmission ratio between the motor inputs and the joint output torques over a predefined dominion. The minimization is constrained to a minimum workspace area value and to minimum and maximum values of the design parameters. Several design solutions were generated. The chosen was one where the workspace is compatible to the gait amplitude requirements and that exhibits the lowest cost function. A biped robot using the linkage geometry designed in this paper has been built and tested with real human gait data acquired in a gait lab.Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM2006-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782006000400016Journal of the Brazilian Society of Mechanical Sciences and Engineering v.28 n.4 2006reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/S1678-58782006000400016info:eu-repo/semantics/openAccessMenegaldo,Luciano L.Santana,Rogerio Eduardo S.Fleury,Agenor de Toledoeng2007-10-08T00:00:00Zoai:scielo:S1678-58782006000400016Revistahttps://www.scielo.br/j/jbsmse/https://old.scielo.br/oai/scielo-oai.php||abcm@abcm.org.br1806-36911678-5878opendoar:2007-10-08T00:00Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false |
dc.title.none.fl_str_mv |
Kinematical modeling and optimal design of a biped robot joint parallel linkage |
title |
Kinematical modeling and optimal design of a biped robot joint parallel linkage |
spellingShingle |
Kinematical modeling and optimal design of a biped robot joint parallel linkage Menegaldo,Luciano L. Parallel linkage mechanisms gait analysis biped robot optimal design |
title_short |
Kinematical modeling and optimal design of a biped robot joint parallel linkage |
title_full |
Kinematical modeling and optimal design of a biped robot joint parallel linkage |
title_fullStr |
Kinematical modeling and optimal design of a biped robot joint parallel linkage |
title_full_unstemmed |
Kinematical modeling and optimal design of a biped robot joint parallel linkage |
title_sort |
Kinematical modeling and optimal design of a biped robot joint parallel linkage |
author |
Menegaldo,Luciano L. |
author_facet |
Menegaldo,Luciano L. Santana,Rogerio Eduardo S. Fleury,Agenor de Toledo |
author_role |
author |
author2 |
Santana,Rogerio Eduardo S. Fleury,Agenor de Toledo |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Menegaldo,Luciano L. Santana,Rogerio Eduardo S. Fleury,Agenor de Toledo |
dc.subject.por.fl_str_mv |
Parallel linkage mechanisms gait analysis biped robot optimal design |
topic |
Parallel linkage mechanisms gait analysis biped robot optimal design |
description |
This paper shows the design and analysis of a parallel three-dimensional linkage, conceived to work as the ankle and hip joints of an anthropometric biped robot. This kind of mechanism architecture provides low-weight, highly stable assemblies, and allows the use of actuator synergies. On the other hand, the mechanical transmission ratio is not usually favorable, and a non-linear kinematic model has to be derived and solved. The mechanism proposed here is driven by two rotational servo-actuators, and allows the joint to follow a specified angular trajectory determined by the gait pattern. Namely, the joint linkage can generate dorsi/plantar flexion and inversion/eversion of the ankle, and hip flexion/extension and adduction/abduction movements. Several approaches to the direct and inverse kinematical modeling of the linkage are presented and compared, regarding their accuracy and computational cost, where the last performance parameter is closely related to on-line computer implementing of the controller. Strategies to fit current gait angular amplitudes into the linkage workspace, as well as singularity analysis, are discussed. An optimization method was applied to find some geometrical design parameters of the linkage that minimizes a cost function. This function is the mean transmission ratio between the motor inputs and the joint output torques over a predefined dominion. The minimization is constrained to a minimum workspace area value and to minimum and maximum values of the design parameters. Several design solutions were generated. The chosen was one where the workspace is compatible to the gait amplitude requirements and that exhibits the lowest cost function. A biped robot using the linkage geometry designed in this paper has been built and tested with real human gait data acquired in a gait lab. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782006000400016 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782006000400016 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1678-58782006000400016 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM |
publisher.none.fl_str_mv |
Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM |
dc.source.none.fl_str_mv |
Journal of the Brazilian Society of Mechanical Sciences and Engineering v.28 n.4 2006 reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) instacron:ABCM |
instname_str |
Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
instacron_str |
ABCM |
institution |
ABCM |
reponame_str |
Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) |
collection |
Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) |
repository.name.fl_str_mv |
Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
repository.mail.fl_str_mv |
||abcm@abcm.org.br |
_version_ |
1754734680911904768 |