Prediction of the temperature distribution of partially submersed umbilical cables
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782012000200012 |
Resumo: | The objective of this work is to predict the temperature distribution of partially submersed umbilical cables under different operating and environmental conditions. The commercial code Fluent® was used to simulate the heat transfer and the air fluid flow of part of a vertical umbilical cable near the air-water interface. A free-convective three-dimensional turbulent flow in open-ended vertical annuli was solved. The influence of parameters such as the heat dissipating rate, wind velocity, air temperature and solar radiation was analyzed. The influence of the presence of a radiation shield consisting of a partially submersed cylindrical steel tube was also considered. The air flow and the buoyancydriven convective heat transfer in the annular region between the steel tube and the umbilical cable were calculated using the standard k-ε turbulence model. The radiative heat transfer between the umbilical external surface and the radiation shield was calculated using the Discrete Ordinates model. The results indicate that the influence of a hot environment and intense solar radiation may affect the umbilical cable performance in its dry portion. |
id |
ABCM-2_76de0305aba6c85ecaeaeef69de8efbc |
---|---|
oai_identifier_str |
oai:scielo:S1678-58782012000200012 |
network_acronym_str |
ABCM-2 |
network_name_str |
Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) |
repository_id_str |
|
spelling |
Prediction of the temperature distribution of partially submersed umbilical cablesumbilical cableconjugate heat transferfree-convective turbulent flowopenended vertical annuliradiation shieldingThe objective of this work is to predict the temperature distribution of partially submersed umbilical cables under different operating and environmental conditions. The commercial code Fluent® was used to simulate the heat transfer and the air fluid flow of part of a vertical umbilical cable near the air-water interface. A free-convective three-dimensional turbulent flow in open-ended vertical annuli was solved. The influence of parameters such as the heat dissipating rate, wind velocity, air temperature and solar radiation was analyzed. The influence of the presence of a radiation shield consisting of a partially submersed cylindrical steel tube was also considered. The air flow and the buoyancydriven convective heat transfer in the annular region between the steel tube and the umbilical cable were calculated using the standard k-ε turbulence model. The radiative heat transfer between the umbilical external surface and the radiation shield was calculated using the Discrete Ordinates model. The results indicate that the influence of a hot environment and intense solar radiation may affect the umbilical cable performance in its dry portion.Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM2012-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782012000200012Journal of the Brazilian Society of Mechanical Sciences and Engineering v.34 n.2 2012reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/S1678-58782012000200012info:eu-repo/semantics/openAccessKrieger,Guenther CarlosYanagihara,Jurandir Itizoeng2012-08-01T00:00:00Zoai:scielo:S1678-58782012000200012Revistahttps://www.scielo.br/j/jbsmse/https://old.scielo.br/oai/scielo-oai.php||abcm@abcm.org.br1806-36911678-5878opendoar:2012-08-01T00:00Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false |
dc.title.none.fl_str_mv |
Prediction of the temperature distribution of partially submersed umbilical cables |
title |
Prediction of the temperature distribution of partially submersed umbilical cables |
spellingShingle |
Prediction of the temperature distribution of partially submersed umbilical cables Krieger,Guenther Carlos umbilical cable conjugate heat transfer free-convective turbulent flow openended vertical annuli radiation shielding |
title_short |
Prediction of the temperature distribution of partially submersed umbilical cables |
title_full |
Prediction of the temperature distribution of partially submersed umbilical cables |
title_fullStr |
Prediction of the temperature distribution of partially submersed umbilical cables |
title_full_unstemmed |
Prediction of the temperature distribution of partially submersed umbilical cables |
title_sort |
Prediction of the temperature distribution of partially submersed umbilical cables |
author |
Krieger,Guenther Carlos |
author_facet |
Krieger,Guenther Carlos Yanagihara,Jurandir Itizo |
author_role |
author |
author2 |
Yanagihara,Jurandir Itizo |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Krieger,Guenther Carlos Yanagihara,Jurandir Itizo |
dc.subject.por.fl_str_mv |
umbilical cable conjugate heat transfer free-convective turbulent flow openended vertical annuli radiation shielding |
topic |
umbilical cable conjugate heat transfer free-convective turbulent flow openended vertical annuli radiation shielding |
description |
The objective of this work is to predict the temperature distribution of partially submersed umbilical cables under different operating and environmental conditions. The commercial code Fluent® was used to simulate the heat transfer and the air fluid flow of part of a vertical umbilical cable near the air-water interface. A free-convective three-dimensional turbulent flow in open-ended vertical annuli was solved. The influence of parameters such as the heat dissipating rate, wind velocity, air temperature and solar radiation was analyzed. The influence of the presence of a radiation shield consisting of a partially submersed cylindrical steel tube was also considered. The air flow and the buoyancydriven convective heat transfer in the annular region between the steel tube and the umbilical cable were calculated using the standard k-ε turbulence model. The radiative heat transfer between the umbilical external surface and the radiation shield was calculated using the Discrete Ordinates model. The results indicate that the influence of a hot environment and intense solar radiation may affect the umbilical cable performance in its dry portion. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-06-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782012000200012 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782012000200012 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1678-58782012000200012 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM |
publisher.none.fl_str_mv |
Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM |
dc.source.none.fl_str_mv |
Journal of the Brazilian Society of Mechanical Sciences and Engineering v.34 n.2 2012 reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) instacron:ABCM |
instname_str |
Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
instacron_str |
ABCM |
institution |
ABCM |
reponame_str |
Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) |
collection |
Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) |
repository.name.fl_str_mv |
Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
repository.mail.fl_str_mv |
||abcm@abcm.org.br |
_version_ |
1754734682194313216 |