Improving the power consumption in pneumatic conveying systems by a daptive control of the flow regime

Detalhes bibliográficos
Autor(a) principal: Barbosa,P. R.
Data de Publicação: 2003
Outros Autores: Seleghim Jr.,P.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782003000400009
Resumo: The pneumatic conveying of solids in a gas stream is a recurrent process in petrochemical industries. However, due to practical limitations the majority of existing systems have capacities ranging from 1 to 400 tones per hour over distances less than 1000 m, mainly because of a high power consumption per transported unit mass. More specifically, to avoid the formation of dense structures such as dunes and plugs, which, depending on the characteristics of the material and on the availability of a pressure head from the carrier phase may cause a violent pressure surge or a possible line blockage, the system is preferably operated at homogeneous dispersed flow. To sustain such a flow regime high velocities are needed and, accounting for the resulting higher pressure drops, higher power consumption is demanded. An optimized pneumatic conveying system can be conceived with the help of adaptive control techniques. In the context described above, lower transport velocities are allowed if the formation of aggregates that precedes the transition to dense phase flow regimes are automatically detected and destroyed, thus, artificially stabilizing the light phase homogeneous flow regime. This work assesses the reduction in the necessary power that the application of such adaptive control technique could produce. Experimental results are presented for a 45 mm i.d. pneumatic conveying system used to transport Setaria Italica seeds. The instrumentation used to identify the flow regime is constituted of several pressure sensors installed along the transport line. The proposed control strategy is based on processing these signals through a neural network model to assess the flow condition and to mimic an optimized gain scheduled PID algorithm. Preliminary results show that reductions in power consumption can reach 50% when compared with classical non controlled transport.
id ABCM-2_943efa1cf1232561bdcbaf013a9c4e02
oai_identifier_str oai:scielo:S1678-58782003000400009
network_acronym_str ABCM-2
network_name_str Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
repository_id_str
spelling Improving the power consumption in pneumatic conveying systems by a daptive control of the flow regimePneumatic conveyingcontrolneural networkgas-solid flowThe pneumatic conveying of solids in a gas stream is a recurrent process in petrochemical industries. However, due to practical limitations the majority of existing systems have capacities ranging from 1 to 400 tones per hour over distances less than 1000 m, mainly because of a high power consumption per transported unit mass. More specifically, to avoid the formation of dense structures such as dunes and plugs, which, depending on the characteristics of the material and on the availability of a pressure head from the carrier phase may cause a violent pressure surge or a possible line blockage, the system is preferably operated at homogeneous dispersed flow. To sustain such a flow regime high velocities are needed and, accounting for the resulting higher pressure drops, higher power consumption is demanded. An optimized pneumatic conveying system can be conceived with the help of adaptive control techniques. In the context described above, lower transport velocities are allowed if the formation of aggregates that precedes the transition to dense phase flow regimes are automatically detected and destroyed, thus, artificially stabilizing the light phase homogeneous flow regime. This work assesses the reduction in the necessary power that the application of such adaptive control technique could produce. Experimental results are presented for a 45 mm i.d. pneumatic conveying system used to transport Setaria Italica seeds. The instrumentation used to identify the flow regime is constituted of several pressure sensors installed along the transport line. The proposed control strategy is based on processing these signals through a neural network model to assess the flow condition and to mimic an optimized gain scheduled PID algorithm. Preliminary results show that reductions in power consumption can reach 50% when compared with classical non controlled transport.Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM2003-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782003000400009Journal of the Brazilian Society of Mechanical Sciences and Engineering v.25 n.4 2003reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/S1678-58782003000400009info:eu-repo/semantics/openAccessBarbosa,P. R.Seleghim Jr.,P.eng2004-03-18T00:00:00Zoai:scielo:S1678-58782003000400009Revistahttps://www.scielo.br/j/jbsmse/https://old.scielo.br/oai/scielo-oai.php||abcm@abcm.org.br1806-36911678-5878opendoar:2004-03-18T00:00Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false
dc.title.none.fl_str_mv Improving the power consumption in pneumatic conveying systems by a daptive control of the flow regime
title Improving the power consumption in pneumatic conveying systems by a daptive control of the flow regime
spellingShingle Improving the power consumption in pneumatic conveying systems by a daptive control of the flow regime
Barbosa,P. R.
Pneumatic conveying
control
neural network
gas-solid flow
title_short Improving the power consumption in pneumatic conveying systems by a daptive control of the flow regime
title_full Improving the power consumption in pneumatic conveying systems by a daptive control of the flow regime
title_fullStr Improving the power consumption in pneumatic conveying systems by a daptive control of the flow regime
title_full_unstemmed Improving the power consumption in pneumatic conveying systems by a daptive control of the flow regime
title_sort Improving the power consumption in pneumatic conveying systems by a daptive control of the flow regime
author Barbosa,P. R.
author_facet Barbosa,P. R.
Seleghim Jr.,P.
author_role author
author2 Seleghim Jr.,P.
author2_role author
dc.contributor.author.fl_str_mv Barbosa,P. R.
Seleghim Jr.,P.
dc.subject.por.fl_str_mv Pneumatic conveying
control
neural network
gas-solid flow
topic Pneumatic conveying
control
neural network
gas-solid flow
description The pneumatic conveying of solids in a gas stream is a recurrent process in petrochemical industries. However, due to practical limitations the majority of existing systems have capacities ranging from 1 to 400 tones per hour over distances less than 1000 m, mainly because of a high power consumption per transported unit mass. More specifically, to avoid the formation of dense structures such as dunes and plugs, which, depending on the characteristics of the material and on the availability of a pressure head from the carrier phase may cause a violent pressure surge or a possible line blockage, the system is preferably operated at homogeneous dispersed flow. To sustain such a flow regime high velocities are needed and, accounting for the resulting higher pressure drops, higher power consumption is demanded. An optimized pneumatic conveying system can be conceived with the help of adaptive control techniques. In the context described above, lower transport velocities are allowed if the formation of aggregates that precedes the transition to dense phase flow regimes are automatically detected and destroyed, thus, artificially stabilizing the light phase homogeneous flow regime. This work assesses the reduction in the necessary power that the application of such adaptive control technique could produce. Experimental results are presented for a 45 mm i.d. pneumatic conveying system used to transport Setaria Italica seeds. The instrumentation used to identify the flow regime is constituted of several pressure sensors installed along the transport line. The proposed control strategy is based on processing these signals through a neural network model to assess the flow condition and to mimic an optimized gain scheduled PID algorithm. Preliminary results show that reductions in power consumption can reach 50% when compared with classical non controlled transport.
publishDate 2003
dc.date.none.fl_str_mv 2003-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782003000400009
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782003000400009
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1678-58782003000400009
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM
publisher.none.fl_str_mv Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM
dc.source.none.fl_str_mv Journal of the Brazilian Society of Mechanical Sciences and Engineering v.25 n.4 2003
reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron:ABCM
instname_str Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron_str ABCM
institution ABCM
reponame_str Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
collection Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
repository.name.fl_str_mv Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
repository.mail.fl_str_mv ||abcm@abcm.org.br
_version_ 1754734680085626880