Conjugate Cooling of a Discrete Heater in Laminar Channel Flow

Detalhes bibliográficos
Autor(a) principal: Alves,Thiago Antonini
Data de Publicação: 2011
Outros Autores: Altemani,Carlos A.C.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782011000300003
Resumo: Electronic components are usually assembled on printed circuit boards cooled by forced airflow. When the spacing between the boards is small, there is no room to employ a heat sink on critical components. Under these conditions, the components’ thermal control may depend on the conductive path from the heater to the board in addition to the direct convective heat transfer to the airflow.The conjugate forced convection-conduction heat transfer from a two-dimensional strip heater flush mounted to a finite thickness wall of a parallel plates channel cooled by a laminar airflow was investigated numerically. A uniform heat flux was generated along the strip heater surface. Under steady state conditions, a fraction of the heat generation was transferred by direct convection to the airflow in the channel and the remaining fraction was transferred by conduction to the channel wall. The lower surface of the channel wall was adiabatic, so that the heat conducted from the heater to the plate eventually returned to the airflow. A portion of it returned upstream of the heater, preheating the airflow before it reached the heater surface. Due to this, it was convenient to treat the direct convection from the heater surface to the airflow by the adiabatic heat transfer coefficient. The flow was developed from the channel entrance, with constant properties.The conjugate problem was solved numerically within a single solution domain comprising both the airflow region and the solid wall of the channel. The results were obtained for the channel flow Reynolds number ranging from about 600 to 1900, corresponding to average airflow velocities from 0.5 m/s to 1.5 m/s. The effects of the solid wall to air thermal conductivities ratio were investigated in the range from 10 to 80, typical of circuit board materials. The wall thickness influence was verified from 1 mm to 5 mm. The results indicated that within these ranges, the conductive substrate wall provided a substantial enhancement of the heat transfer from the heater, accomplished by an increase of its average adiabatic surface temperature.
id ABCM-2_97cbe6ec92c6d892030e498676be8829
oai_identifier_str oai:scielo:S1678-58782011000300003
network_acronym_str ABCM-2
network_name_str Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
repository_id_str
spelling Conjugate Cooling of a Discrete Heater in Laminar Channel Flowconjugate heat transferadiabatic heat transfer coefficientlaminar channel flownumerical analysisElectronic components are usually assembled on printed circuit boards cooled by forced airflow. When the spacing between the boards is small, there is no room to employ a heat sink on critical components. Under these conditions, the components’ thermal control may depend on the conductive path from the heater to the board in addition to the direct convective heat transfer to the airflow.The conjugate forced convection-conduction heat transfer from a two-dimensional strip heater flush mounted to a finite thickness wall of a parallel plates channel cooled by a laminar airflow was investigated numerically. A uniform heat flux was generated along the strip heater surface. Under steady state conditions, a fraction of the heat generation was transferred by direct convection to the airflow in the channel and the remaining fraction was transferred by conduction to the channel wall. The lower surface of the channel wall was adiabatic, so that the heat conducted from the heater to the plate eventually returned to the airflow. A portion of it returned upstream of the heater, preheating the airflow before it reached the heater surface. Due to this, it was convenient to treat the direct convection from the heater surface to the airflow by the adiabatic heat transfer coefficient. The flow was developed from the channel entrance, with constant properties.The conjugate problem was solved numerically within a single solution domain comprising both the airflow region and the solid wall of the channel. The results were obtained for the channel flow Reynolds number ranging from about 600 to 1900, corresponding to average airflow velocities from 0.5 m/s to 1.5 m/s. The effects of the solid wall to air thermal conductivities ratio were investigated in the range from 10 to 80, typical of circuit board materials. The wall thickness influence was verified from 1 mm to 5 mm. The results indicated that within these ranges, the conductive substrate wall provided a substantial enhancement of the heat transfer from the heater, accomplished by an increase of its average adiabatic surface temperature.Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM2011-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782011000300003Journal of the Brazilian Society of Mechanical Sciences and Engineering v.33 n.3 2011reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/S1678-58782011000300003info:eu-repo/semantics/openAccessAlves,Thiago AntoniniAltemani,Carlos A.C.eng2011-12-06T00:00:00Zoai:scielo:S1678-58782011000300003Revistahttps://www.scielo.br/j/jbsmse/https://old.scielo.br/oai/scielo-oai.php||abcm@abcm.org.br1806-36911678-5878opendoar:2011-12-06T00:00Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false
dc.title.none.fl_str_mv Conjugate Cooling of a Discrete Heater in Laminar Channel Flow
title Conjugate Cooling of a Discrete Heater in Laminar Channel Flow
spellingShingle Conjugate Cooling of a Discrete Heater in Laminar Channel Flow
Alves,Thiago Antonini
conjugate heat transfer
adiabatic heat transfer coefficient
laminar channel flow
numerical analysis
title_short Conjugate Cooling of a Discrete Heater in Laminar Channel Flow
title_full Conjugate Cooling of a Discrete Heater in Laminar Channel Flow
title_fullStr Conjugate Cooling of a Discrete Heater in Laminar Channel Flow
title_full_unstemmed Conjugate Cooling of a Discrete Heater in Laminar Channel Flow
title_sort Conjugate Cooling of a Discrete Heater in Laminar Channel Flow
author Alves,Thiago Antonini
author_facet Alves,Thiago Antonini
Altemani,Carlos A.C.
author_role author
author2 Altemani,Carlos A.C.
author2_role author
dc.contributor.author.fl_str_mv Alves,Thiago Antonini
Altemani,Carlos A.C.
dc.subject.por.fl_str_mv conjugate heat transfer
adiabatic heat transfer coefficient
laminar channel flow
numerical analysis
topic conjugate heat transfer
adiabatic heat transfer coefficient
laminar channel flow
numerical analysis
description Electronic components are usually assembled on printed circuit boards cooled by forced airflow. When the spacing between the boards is small, there is no room to employ a heat sink on critical components. Under these conditions, the components’ thermal control may depend on the conductive path from the heater to the board in addition to the direct convective heat transfer to the airflow.The conjugate forced convection-conduction heat transfer from a two-dimensional strip heater flush mounted to a finite thickness wall of a parallel plates channel cooled by a laminar airflow was investigated numerically. A uniform heat flux was generated along the strip heater surface. Under steady state conditions, a fraction of the heat generation was transferred by direct convection to the airflow in the channel and the remaining fraction was transferred by conduction to the channel wall. The lower surface of the channel wall was adiabatic, so that the heat conducted from the heater to the plate eventually returned to the airflow. A portion of it returned upstream of the heater, preheating the airflow before it reached the heater surface. Due to this, it was convenient to treat the direct convection from the heater surface to the airflow by the adiabatic heat transfer coefficient. The flow was developed from the channel entrance, with constant properties.The conjugate problem was solved numerically within a single solution domain comprising both the airflow region and the solid wall of the channel. The results were obtained for the channel flow Reynolds number ranging from about 600 to 1900, corresponding to average airflow velocities from 0.5 m/s to 1.5 m/s. The effects of the solid wall to air thermal conductivities ratio were investigated in the range from 10 to 80, typical of circuit board materials. The wall thickness influence was verified from 1 mm to 5 mm. The results indicated that within these ranges, the conductive substrate wall provided a substantial enhancement of the heat transfer from the heater, accomplished by an increase of its average adiabatic surface temperature.
publishDate 2011
dc.date.none.fl_str_mv 2011-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782011000300003
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782011000300003
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1678-58782011000300003
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM
publisher.none.fl_str_mv Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM
dc.source.none.fl_str_mv Journal of the Brazilian Society of Mechanical Sciences and Engineering v.33 n.3 2011
reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron:ABCM
instname_str Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron_str ABCM
institution ABCM
reponame_str Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
collection Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
repository.name.fl_str_mv Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
repository.mail.fl_str_mv ||abcm@abcm.org.br
_version_ 1754734681902809088