Nonlinear instabilities on a granular bed sheared by a turbulent liquid flow

Detalhes bibliográficos
Autor(a) principal: Franklin,Erick de Moraes
Data de Publicação: 2011
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782011000300001
Resumo: The granular media is of great importance in our quotidian, and their transport by a fluid flow is frequently found in nature and in industry. When the shear stresses exerted by the fluid flow on a granular bed are bounded to some limits, a mobile granular layer known as bed-load takes place in which the grains stay in contact with the fixed part of the granular bed. Under these conditions, a flat granular bed may be unstable, generating ripples and dunes. In a recent article (Franklin, 2010), the mechanisms of this instability were explained and a linear stability analysis was presented, in which a scaling between the fluid flow conditions and the typical length of the initial bed-forms was proposed. The present paper proposes a nonlinear stability analysis (weakly nonlinear approach) applicable to sheared granular beds, shedding light on the evolution of the bed-forms after their initial phase. The scope of the nonlinear analysis is the same as that of Franklin (2010): granular beds under turbulent liquid flows and in the presence of bed-load. It is shown here that, in this case, the initial instabilities saturate (supercritical bifurcation). Also, a discussion is made on some published experimental data.
id ABCM-2_9a7a51ec25f27e83f256cc65554df204
oai_identifier_str oai:scielo:S1678-58782011000300001
network_acronym_str ABCM-2
network_name_str Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
repository_id_str
spelling Nonlinear instabilities on a granular bed sheared by a turbulent liquid flowtwo-phase flowgranular bedbed-loadnonlinear instabilitiespattern formationThe granular media is of great importance in our quotidian, and their transport by a fluid flow is frequently found in nature and in industry. When the shear stresses exerted by the fluid flow on a granular bed are bounded to some limits, a mobile granular layer known as bed-load takes place in which the grains stay in contact with the fixed part of the granular bed. Under these conditions, a flat granular bed may be unstable, generating ripples and dunes. In a recent article (Franklin, 2010), the mechanisms of this instability were explained and a linear stability analysis was presented, in which a scaling between the fluid flow conditions and the typical length of the initial bed-forms was proposed. The present paper proposes a nonlinear stability analysis (weakly nonlinear approach) applicable to sheared granular beds, shedding light on the evolution of the bed-forms after their initial phase. The scope of the nonlinear analysis is the same as that of Franklin (2010): granular beds under turbulent liquid flows and in the presence of bed-load. It is shown here that, in this case, the initial instabilities saturate (supercritical bifurcation). Also, a discussion is made on some published experimental data.Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM2011-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782011000300001Journal of the Brazilian Society of Mechanical Sciences and Engineering v.33 n.3 2011reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/S1678-58782011000300001info:eu-repo/semantics/openAccessFranklin,Erick de Moraeseng2011-12-06T00:00:00Zoai:scielo:S1678-58782011000300001Revistahttps://www.scielo.br/j/jbsmse/https://old.scielo.br/oai/scielo-oai.php||abcm@abcm.org.br1806-36911678-5878opendoar:2011-12-06T00:00Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false
dc.title.none.fl_str_mv Nonlinear instabilities on a granular bed sheared by a turbulent liquid flow
title Nonlinear instabilities on a granular bed sheared by a turbulent liquid flow
spellingShingle Nonlinear instabilities on a granular bed sheared by a turbulent liquid flow
Franklin,Erick de Moraes
two-phase flow
granular bed
bed-load
nonlinear instabilities
pattern formation
title_short Nonlinear instabilities on a granular bed sheared by a turbulent liquid flow
title_full Nonlinear instabilities on a granular bed sheared by a turbulent liquid flow
title_fullStr Nonlinear instabilities on a granular bed sheared by a turbulent liquid flow
title_full_unstemmed Nonlinear instabilities on a granular bed sheared by a turbulent liquid flow
title_sort Nonlinear instabilities on a granular bed sheared by a turbulent liquid flow
author Franklin,Erick de Moraes
author_facet Franklin,Erick de Moraes
author_role author
dc.contributor.author.fl_str_mv Franklin,Erick de Moraes
dc.subject.por.fl_str_mv two-phase flow
granular bed
bed-load
nonlinear instabilities
pattern formation
topic two-phase flow
granular bed
bed-load
nonlinear instabilities
pattern formation
description The granular media is of great importance in our quotidian, and their transport by a fluid flow is frequently found in nature and in industry. When the shear stresses exerted by the fluid flow on a granular bed are bounded to some limits, a mobile granular layer known as bed-load takes place in which the grains stay in contact with the fixed part of the granular bed. Under these conditions, a flat granular bed may be unstable, generating ripples and dunes. In a recent article (Franklin, 2010), the mechanisms of this instability were explained and a linear stability analysis was presented, in which a scaling between the fluid flow conditions and the typical length of the initial bed-forms was proposed. The present paper proposes a nonlinear stability analysis (weakly nonlinear approach) applicable to sheared granular beds, shedding light on the evolution of the bed-forms after their initial phase. The scope of the nonlinear analysis is the same as that of Franklin (2010): granular beds under turbulent liquid flows and in the presence of bed-load. It is shown here that, in this case, the initial instabilities saturate (supercritical bifurcation). Also, a discussion is made on some published experimental data.
publishDate 2011
dc.date.none.fl_str_mv 2011-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782011000300001
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782011000300001
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1678-58782011000300001
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM
publisher.none.fl_str_mv Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM
dc.source.none.fl_str_mv Journal of the Brazilian Society of Mechanical Sciences and Engineering v.33 n.3 2011
reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron:ABCM
instname_str Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron_str ABCM
institution ABCM
reponame_str Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
collection Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
repository.name.fl_str_mv Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
repository.mail.fl_str_mv ||abcm@abcm.org.br
_version_ 1754734681899663360