In-process grinding monitoring through acoustic emission
Autor(a) principal: | |
---|---|
Data de Publicação: | 2006 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782006000100014 |
Resumo: | This work aims to investigate the efficiency of digital signal processing tools of acoustic emission signals in order to detect thermal damages in grinding processes. To accomplish such a goal, an experimental work was carried out for 15 runs in a surface grinding machine operating with an aluminum oxide grinding wheel and ABNT 1045 Steel as work material. The acoustic emission signals were acquired from a fixed sensor placed on the workpiece holder. A high sampling rate data acquisition system working at 2.5 MHz was used to collect the raw acoustic emission instead of the root mean square value usually employed. Many statistical analyses have shown to be effective to detect burn, such as the root mean square (RMS), correlation of the AE, constant false alarm rate (CFAR), ratio of power (ROP) and mean-value deviance (MVD). However, the CFAR, ROP, Kurtosis and correlation of the AE have been presented more sensitive than the RMS. |
id |
ABCM-2_bba0445a0cc0803f0781920183a774fb |
---|---|
oai_identifier_str |
oai:scielo:S1678-58782006000100014 |
network_acronym_str |
ABCM-2 |
network_name_str |
Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) |
repository_id_str |
|
spelling |
In-process grinding monitoring through acoustic emissionGrindingburn detectionacoustic emissionelectrical powermonitoringThis work aims to investigate the efficiency of digital signal processing tools of acoustic emission signals in order to detect thermal damages in grinding processes. To accomplish such a goal, an experimental work was carried out for 15 runs in a surface grinding machine operating with an aluminum oxide grinding wheel and ABNT 1045 Steel as work material. The acoustic emission signals were acquired from a fixed sensor placed on the workpiece holder. A high sampling rate data acquisition system working at 2.5 MHz was used to collect the raw acoustic emission instead of the root mean square value usually employed. Many statistical analyses have shown to be effective to detect burn, such as the root mean square (RMS), correlation of the AE, constant false alarm rate (CFAR), ratio of power (ROP) and mean-value deviance (MVD). However, the CFAR, ROP, Kurtosis and correlation of the AE have been presented more sensitive than the RMS.Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM2006-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782006000100014Journal of the Brazilian Society of Mechanical Sciences and Engineering v.28 n.1 2006reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/S1678-58782006000100014info:eu-repo/semantics/openAccessAguiar,Paulo R.Serni,Paulo J. A.Dotto,Fábio R. L.Bianchi,Eduardo C.eng2006-03-20T00:00:00Zoai:scielo:S1678-58782006000100014Revistahttps://www.scielo.br/j/jbsmse/https://old.scielo.br/oai/scielo-oai.php||abcm@abcm.org.br1806-36911678-5878opendoar:2006-03-20T00:00Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false |
dc.title.none.fl_str_mv |
In-process grinding monitoring through acoustic emission |
title |
In-process grinding monitoring through acoustic emission |
spellingShingle |
In-process grinding monitoring through acoustic emission Aguiar,Paulo R. Grinding burn detection acoustic emission electrical power monitoring |
title_short |
In-process grinding monitoring through acoustic emission |
title_full |
In-process grinding monitoring through acoustic emission |
title_fullStr |
In-process grinding monitoring through acoustic emission |
title_full_unstemmed |
In-process grinding monitoring through acoustic emission |
title_sort |
In-process grinding monitoring through acoustic emission |
author |
Aguiar,Paulo R. |
author_facet |
Aguiar,Paulo R. Serni,Paulo J. A. Dotto,Fábio R. L. Bianchi,Eduardo C. |
author_role |
author |
author2 |
Serni,Paulo J. A. Dotto,Fábio R. L. Bianchi,Eduardo C. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Aguiar,Paulo R. Serni,Paulo J. A. Dotto,Fábio R. L. Bianchi,Eduardo C. |
dc.subject.por.fl_str_mv |
Grinding burn detection acoustic emission electrical power monitoring |
topic |
Grinding burn detection acoustic emission electrical power monitoring |
description |
This work aims to investigate the efficiency of digital signal processing tools of acoustic emission signals in order to detect thermal damages in grinding processes. To accomplish such a goal, an experimental work was carried out for 15 runs in a surface grinding machine operating with an aluminum oxide grinding wheel and ABNT 1045 Steel as work material. The acoustic emission signals were acquired from a fixed sensor placed on the workpiece holder. A high sampling rate data acquisition system working at 2.5 MHz was used to collect the raw acoustic emission instead of the root mean square value usually employed. Many statistical analyses have shown to be effective to detect burn, such as the root mean square (RMS), correlation of the AE, constant false alarm rate (CFAR), ratio of power (ROP) and mean-value deviance (MVD). However, the CFAR, ROP, Kurtosis and correlation of the AE have been presented more sensitive than the RMS. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-03-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782006000100014 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782006000100014 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1678-58782006000100014 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM |
publisher.none.fl_str_mv |
Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM |
dc.source.none.fl_str_mv |
Journal of the Brazilian Society of Mechanical Sciences and Engineering v.28 n.1 2006 reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) instacron:ABCM |
instname_str |
Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
instacron_str |
ABCM |
institution |
ABCM |
reponame_str |
Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) |
collection |
Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) |
repository.name.fl_str_mv |
Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
repository.mail.fl_str_mv |
||abcm@abcm.org.br |
_version_ |
1754734680533368832 |