Approximate expressions for the reflection coefficient of ducts terminated by circular flanges
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782012000200014 |
Resumo: | Estimating the magnitude of the pressure reflection coefficient |R| and the end correction l at the open end of ducts is a critical procedure when designing or predicting the acoustic behavior of acoustical systems, such as exhausts, tailpipes, mufflers, loudspeaker enclosures and so on. For cylindrical ducts and plane waves, exact intricate solutions exist for two distinct open-end boundary conditions, namely for a thin-walled unflanged pipe and for a pipe terminated by an infinite flange. This work provides simple approximate expressions for |R| and l of cylindrical pipes terminated by circular flanges with finite radii. The expressions are obtained from a polynomial fit performed over the numerical results provided by a Boundary Element model, and is valid for Helmholtz numbers in the range 0 < ka < 3.0, as well as for 0 < a/b < 1, where a and b are the pipe and flange radii, respectively. When compared with the exact solutions for both the unflanged and the infinite-flanged pipe, the approximate formulae provide a maximum error of ~2% at the upper frequency limit (ka →3.0). |
id |
ABCM-2_cd6910598f33e8a9e8ecdbec79eedc6e |
---|---|
oai_identifier_str |
oai:scielo:S1678-58782012000200014 |
network_acronym_str |
ABCM-2 |
network_name_str |
Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) |
repository_id_str |
|
spelling |
Approximate expressions for the reflection coefficient of ducts terminated by circular flangesreflection coefficientcylindrical ductsflangeboundary element modelEstimating the magnitude of the pressure reflection coefficient |R| and the end correction l at the open end of ducts is a critical procedure when designing or predicting the acoustic behavior of acoustical systems, such as exhausts, tailpipes, mufflers, loudspeaker enclosures and so on. For cylindrical ducts and plane waves, exact intricate solutions exist for two distinct open-end boundary conditions, namely for a thin-walled unflanged pipe and for a pipe terminated by an infinite flange. This work provides simple approximate expressions for |R| and l of cylindrical pipes terminated by circular flanges with finite radii. The expressions are obtained from a polynomial fit performed over the numerical results provided by a Boundary Element model, and is valid for Helmholtz numbers in the range 0 < ka < 3.0, as well as for 0 < a/b < 1, where a and b are the pipe and flange radii, respectively. When compared with the exact solutions for both the unflanged and the infinite-flanged pipe, the approximate formulae provide a maximum error of ~2% at the upper frequency limit (ka →3.0).Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM2012-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782012000200014Journal of the Brazilian Society of Mechanical Sciences and Engineering v.34 n.2 2012reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/S1678-58782012000200014info:eu-repo/semantics/openAccessSilva,Andrey R. DaMareze,Paulo HenriqueLenzi,Arcanjoeng2012-08-01T00:00:00Zoai:scielo:S1678-58782012000200014Revistahttps://www.scielo.br/j/jbsmse/https://old.scielo.br/oai/scielo-oai.php||abcm@abcm.org.br1806-36911678-5878opendoar:2012-08-01T00:00Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false |
dc.title.none.fl_str_mv |
Approximate expressions for the reflection coefficient of ducts terminated by circular flanges |
title |
Approximate expressions for the reflection coefficient of ducts terminated by circular flanges |
spellingShingle |
Approximate expressions for the reflection coefficient of ducts terminated by circular flanges Silva,Andrey R. Da reflection coefficient cylindrical ducts flange boundary element model |
title_short |
Approximate expressions for the reflection coefficient of ducts terminated by circular flanges |
title_full |
Approximate expressions for the reflection coefficient of ducts terminated by circular flanges |
title_fullStr |
Approximate expressions for the reflection coefficient of ducts terminated by circular flanges |
title_full_unstemmed |
Approximate expressions for the reflection coefficient of ducts terminated by circular flanges |
title_sort |
Approximate expressions for the reflection coefficient of ducts terminated by circular flanges |
author |
Silva,Andrey R. Da |
author_facet |
Silva,Andrey R. Da Mareze,Paulo Henrique Lenzi,Arcanjo |
author_role |
author |
author2 |
Mareze,Paulo Henrique Lenzi,Arcanjo |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Silva,Andrey R. Da Mareze,Paulo Henrique Lenzi,Arcanjo |
dc.subject.por.fl_str_mv |
reflection coefficient cylindrical ducts flange boundary element model |
topic |
reflection coefficient cylindrical ducts flange boundary element model |
description |
Estimating the magnitude of the pressure reflection coefficient |R| and the end correction l at the open end of ducts is a critical procedure when designing or predicting the acoustic behavior of acoustical systems, such as exhausts, tailpipes, mufflers, loudspeaker enclosures and so on. For cylindrical ducts and plane waves, exact intricate solutions exist for two distinct open-end boundary conditions, namely for a thin-walled unflanged pipe and for a pipe terminated by an infinite flange. This work provides simple approximate expressions for |R| and l of cylindrical pipes terminated by circular flanges with finite radii. The expressions are obtained from a polynomial fit performed over the numerical results provided by a Boundary Element model, and is valid for Helmholtz numbers in the range 0 < ka < 3.0, as well as for 0 < a/b < 1, where a and b are the pipe and flange radii, respectively. When compared with the exact solutions for both the unflanged and the infinite-flanged pipe, the approximate formulae provide a maximum error of ~2% at the upper frequency limit (ka →3.0). |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-06-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782012000200014 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782012000200014 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1678-58782012000200014 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM |
publisher.none.fl_str_mv |
Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM |
dc.source.none.fl_str_mv |
Journal of the Brazilian Society of Mechanical Sciences and Engineering v.34 n.2 2012 reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) instacron:ABCM |
instname_str |
Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
instacron_str |
ABCM |
institution |
ABCM |
reponame_str |
Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) |
collection |
Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) |
repository.name.fl_str_mv |
Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
repository.mail.fl_str_mv |
||abcm@abcm.org.br |
_version_ |
1754734682197458944 |