Experimental investigation of the enhanced oil recovery process using a polymeric solution

Detalhes bibliográficos
Autor(a) principal: Rangel,Ithamar R.
Data de Publicação: 2012
Outros Autores: Thompson,Roney L., Pereira,Roberto G., Abreu,Fernando L. B. de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782012000300009
Resumo: Enhanced oil recovery methods are becoming an important source of oil production of wells that have already been explored and, by these methods, of increase of the total volume of oil extracted. An important example is the injection of polymeric solutions after the injected water has reached the breakthrough point. In the present work an experimental apparatus was built in order to test the ability of enhanced oil recovery of polymeric solutions, composed by Xanthan Gum (XG) dissolved in distilled water. This apparatus consists of an idealized porous media made with small spheres inserted in a cylindrical cell and then filled with oil with the same viscosity as the petroleum found in Campos Basin (Rio de Janeiro, Brazil). As displacing fluid, we tested polymeric solutions of different concentrations of Xanthan Gum and these non-Newtonian fluids were characterized using a rotational rheometer. The resulting characterization has shown that increasing the concentration, not only the level of viscosity, but also the elasticity of the fluid increases. The shear-thinning behavior of the solution can be well captured by a power-law model. For higher concentrations the shear-thinning feature of the Xanthan Gum solution is more pronounced. We conducted an experimental procedure to mimic enhanced oil recovery process by first injecting water until the breakthrough point. Increasing the polymer concentration, the extra amount of oil recovered also increase. Theoretical and heuristic analyses show that in the shear dominated regions, the Xanthan Gum polymeric solutions do not increase pore efficiency, but increase sweep efficiency, while the extensional character of the polymeric solution seems to indicate that in extensional dominated regions the polymeric solutions play an important role on the oil recovery efficiency from both perspectives: pore and sweep efficiencies.
id ABCM-2_f5d19885975a5e5d3e724bb1f4f9637a
oai_identifier_str oai:scielo:S1678-58782012000300009
network_acronym_str ABCM-2
network_name_str Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
repository_id_str
spelling Experimental investigation of the enhanced oil recovery process using a polymeric solutionoil recoverypolymeric solutionporous mediaEnhanced oil recovery methods are becoming an important source of oil production of wells that have already been explored and, by these methods, of increase of the total volume of oil extracted. An important example is the injection of polymeric solutions after the injected water has reached the breakthrough point. In the present work an experimental apparatus was built in order to test the ability of enhanced oil recovery of polymeric solutions, composed by Xanthan Gum (XG) dissolved in distilled water. This apparatus consists of an idealized porous media made with small spheres inserted in a cylindrical cell and then filled with oil with the same viscosity as the petroleum found in Campos Basin (Rio de Janeiro, Brazil). As displacing fluid, we tested polymeric solutions of different concentrations of Xanthan Gum and these non-Newtonian fluids were characterized using a rotational rheometer. The resulting characterization has shown that increasing the concentration, not only the level of viscosity, but also the elasticity of the fluid increases. The shear-thinning behavior of the solution can be well captured by a power-law model. For higher concentrations the shear-thinning feature of the Xanthan Gum solution is more pronounced. We conducted an experimental procedure to mimic enhanced oil recovery process by first injecting water until the breakthrough point. Increasing the polymer concentration, the extra amount of oil recovered also increase. Theoretical and heuristic analyses show that in the shear dominated regions, the Xanthan Gum polymeric solutions do not increase pore efficiency, but increase sweep efficiency, while the extensional character of the polymeric solution seems to indicate that in extensional dominated regions the polymeric solutions play an important role on the oil recovery efficiency from both perspectives: pore and sweep efficiencies.Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM2012-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782012000300009Journal of the Brazilian Society of Mechanical Sciences and Engineering v.34 n.3 2012reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/S1678-58782012000300009info:eu-repo/semantics/openAccessRangel,Ithamar R.Thompson,Roney L.Pereira,Roberto G.Abreu,Fernando L. B. deeng2012-11-01T00:00:00Zoai:scielo:S1678-58782012000300009Revistahttps://www.scielo.br/j/jbsmse/https://old.scielo.br/oai/scielo-oai.php||abcm@abcm.org.br1806-36911678-5878opendoar:2012-11-01T00:00Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false
dc.title.none.fl_str_mv Experimental investigation of the enhanced oil recovery process using a polymeric solution
title Experimental investigation of the enhanced oil recovery process using a polymeric solution
spellingShingle Experimental investigation of the enhanced oil recovery process using a polymeric solution
Rangel,Ithamar R.
oil recovery
polymeric solution
porous media
title_short Experimental investigation of the enhanced oil recovery process using a polymeric solution
title_full Experimental investigation of the enhanced oil recovery process using a polymeric solution
title_fullStr Experimental investigation of the enhanced oil recovery process using a polymeric solution
title_full_unstemmed Experimental investigation of the enhanced oil recovery process using a polymeric solution
title_sort Experimental investigation of the enhanced oil recovery process using a polymeric solution
author Rangel,Ithamar R.
author_facet Rangel,Ithamar R.
Thompson,Roney L.
Pereira,Roberto G.
Abreu,Fernando L. B. de
author_role author
author2 Thompson,Roney L.
Pereira,Roberto G.
Abreu,Fernando L. B. de
author2_role author
author
author
dc.contributor.author.fl_str_mv Rangel,Ithamar R.
Thompson,Roney L.
Pereira,Roberto G.
Abreu,Fernando L. B. de
dc.subject.por.fl_str_mv oil recovery
polymeric solution
porous media
topic oil recovery
polymeric solution
porous media
description Enhanced oil recovery methods are becoming an important source of oil production of wells that have already been explored and, by these methods, of increase of the total volume of oil extracted. An important example is the injection of polymeric solutions after the injected water has reached the breakthrough point. In the present work an experimental apparatus was built in order to test the ability of enhanced oil recovery of polymeric solutions, composed by Xanthan Gum (XG) dissolved in distilled water. This apparatus consists of an idealized porous media made with small spheres inserted in a cylindrical cell and then filled with oil with the same viscosity as the petroleum found in Campos Basin (Rio de Janeiro, Brazil). As displacing fluid, we tested polymeric solutions of different concentrations of Xanthan Gum and these non-Newtonian fluids were characterized using a rotational rheometer. The resulting characterization has shown that increasing the concentration, not only the level of viscosity, but also the elasticity of the fluid increases. The shear-thinning behavior of the solution can be well captured by a power-law model. For higher concentrations the shear-thinning feature of the Xanthan Gum solution is more pronounced. We conducted an experimental procedure to mimic enhanced oil recovery process by first injecting water until the breakthrough point. Increasing the polymer concentration, the extra amount of oil recovered also increase. Theoretical and heuristic analyses show that in the shear dominated regions, the Xanthan Gum polymeric solutions do not increase pore efficiency, but increase sweep efficiency, while the extensional character of the polymeric solution seems to indicate that in extensional dominated regions the polymeric solutions play an important role on the oil recovery efficiency from both perspectives: pore and sweep efficiencies.
publishDate 2012
dc.date.none.fl_str_mv 2012-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782012000300009
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782012000300009
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1678-58782012000300009
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM
publisher.none.fl_str_mv Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM
dc.source.none.fl_str_mv Journal of the Brazilian Society of Mechanical Sciences and Engineering v.34 n.3 2012
reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron:ABCM
instname_str Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron_str ABCM
institution ABCM
reponame_str Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
collection Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
repository.name.fl_str_mv Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
repository.mail.fl_str_mv ||abcm@abcm.org.br
_version_ 1754734682211090432