Modelling hermetic compressors using different constraint equations to accommodate multibody dynamics and hydrodynamic lubrication
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782009000100006 |
Resumo: | In this work, the steps involved for the modelling of a reciprocating linear compressor are described in detail. The dynamics of the mechanical components are described with the help of multibody dynamics (rigid components) and finite elements method (flexible components). Some of the mechanical elements are supported by fluid film bearings, where the hydrodynamic interaction forces are described by the Reynolds equation. The system of nonlinear equations is numerically solved for three different restrictive conditions of the motion of the crank, where the third case takes into account lateral and tilting oscillations of the extremity of the crankshaft. The numerical results of the behaviour of the journal bearings for each case are presented giving some insights into design parameters such as, maximum oil film pressure, minimum oil film thickness, maximum vibration levels and dynamic reaction forces among machine components, looking for the optimization and application of active lubrication towards vibration reduction. |
id |
ABCM-2_f9247b6cbe47ddf5a94268be3a8c7ca5 |
---|---|
oai_identifier_str |
oai:scielo:S1678-58782009000100006 |
network_acronym_str |
ABCM-2 |
network_name_str |
Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) |
repository_id_str |
|
spelling |
Modelling hermetic compressors using different constraint equations to accommodate multibody dynamics and hydrodynamic lubricationhermetic compressormultibody dynamicsjournal bearingReynolds equationhydrodynamic lubricationIn this work, the steps involved for the modelling of a reciprocating linear compressor are described in detail. The dynamics of the mechanical components are described with the help of multibody dynamics (rigid components) and finite elements method (flexible components). Some of the mechanical elements are supported by fluid film bearings, where the hydrodynamic interaction forces are described by the Reynolds equation. The system of nonlinear equations is numerically solved for three different restrictive conditions of the motion of the crank, where the third case takes into account lateral and tilting oscillations of the extremity of the crankshaft. The numerical results of the behaviour of the journal bearings for each case are presented giving some insights into design parameters such as, maximum oil film pressure, minimum oil film thickness, maximum vibration levels and dynamic reaction forces among machine components, looking for the optimization and application of active lubrication towards vibration reduction.Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM2009-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782009000100006Journal of the Brazilian Society of Mechanical Sciences and Engineering v.31 n.1 2009reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/S1678-58782009000100006info:eu-repo/semantics/openAccessEstupiñan,Edgar A.Santos,Ilmar F.eng2009-05-18T00:00:00Zoai:scielo:S1678-58782009000100006Revistahttps://www.scielo.br/j/jbsmse/https://old.scielo.br/oai/scielo-oai.php||abcm@abcm.org.br1806-36911678-5878opendoar:2009-05-18T00:00Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false |
dc.title.none.fl_str_mv |
Modelling hermetic compressors using different constraint equations to accommodate multibody dynamics and hydrodynamic lubrication |
title |
Modelling hermetic compressors using different constraint equations to accommodate multibody dynamics and hydrodynamic lubrication |
spellingShingle |
Modelling hermetic compressors using different constraint equations to accommodate multibody dynamics and hydrodynamic lubrication Estupiñan,Edgar A. hermetic compressor multibody dynamics journal bearing Reynolds equation hydrodynamic lubrication |
title_short |
Modelling hermetic compressors using different constraint equations to accommodate multibody dynamics and hydrodynamic lubrication |
title_full |
Modelling hermetic compressors using different constraint equations to accommodate multibody dynamics and hydrodynamic lubrication |
title_fullStr |
Modelling hermetic compressors using different constraint equations to accommodate multibody dynamics and hydrodynamic lubrication |
title_full_unstemmed |
Modelling hermetic compressors using different constraint equations to accommodate multibody dynamics and hydrodynamic lubrication |
title_sort |
Modelling hermetic compressors using different constraint equations to accommodate multibody dynamics and hydrodynamic lubrication |
author |
Estupiñan,Edgar A. |
author_facet |
Estupiñan,Edgar A. Santos,Ilmar F. |
author_role |
author |
author2 |
Santos,Ilmar F. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Estupiñan,Edgar A. Santos,Ilmar F. |
dc.subject.por.fl_str_mv |
hermetic compressor multibody dynamics journal bearing Reynolds equation hydrodynamic lubrication |
topic |
hermetic compressor multibody dynamics journal bearing Reynolds equation hydrodynamic lubrication |
description |
In this work, the steps involved for the modelling of a reciprocating linear compressor are described in detail. The dynamics of the mechanical components are described with the help of multibody dynamics (rigid components) and finite elements method (flexible components). Some of the mechanical elements are supported by fluid film bearings, where the hydrodynamic interaction forces are described by the Reynolds equation. The system of nonlinear equations is numerically solved for three different restrictive conditions of the motion of the crank, where the third case takes into account lateral and tilting oscillations of the extremity of the crankshaft. The numerical results of the behaviour of the journal bearings for each case are presented giving some insights into design parameters such as, maximum oil film pressure, minimum oil film thickness, maximum vibration levels and dynamic reaction forces among machine components, looking for the optimization and application of active lubrication towards vibration reduction. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-03-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782009000100006 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782009000100006 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1678-58782009000100006 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM |
publisher.none.fl_str_mv |
Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM |
dc.source.none.fl_str_mv |
Journal of the Brazilian Society of Mechanical Sciences and Engineering v.31 n.1 2009 reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) instacron:ABCM |
instname_str |
Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
instacron_str |
ABCM |
institution |
ABCM |
reponame_str |
Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) |
collection |
Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) |
repository.name.fl_str_mv |
Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
repository.mail.fl_str_mv |
||abcm@abcm.org.br |
_version_ |
1754734681404735488 |