Numerical simulations of flows over a rotating circular cylinder using the immersed boundary method
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782011000100014 |
Resumo: | In this paper, numerical simulations of incompressible flows around rotating circular cylinders have been performed. The two-dimensional Navier-Stokes equations are solved by using a Cartesian non-uniform grid. The Immersed Boundary Method (IBM) with the Virtual Physical Model (VPM) was used in order to model the presence of the circular cylinder in the flow. The fractional time step method was used to coupling the pressure and velocity fields. The simulations were carried out for Reynolds numbers equals to 60, 100 and 200 for different specific rotations. The effects of rotation on flow characteristics and fluctuating forces were investigated. The Strouhal number, obtained by performing the Fast Fourier Transform (FFT) of the temporal distribution of the lift coefficient, and the pressure coefficients, were also been calculated. Vorticity contours are presented considering different values of the Reynolds number and specific rotation. The numerical results obtained are compared to those obtained by other authors and the usefulness of the numerical methodology composed by the combination of the IBM with the VPM to simulate flows in the presence of mobile bodies is highlighted. |
id |
ABCM-2_fe1efc954190098eb7873131fbb5d3be |
---|---|
oai_identifier_str |
oai:scielo:S1678-58782011000100014 |
network_acronym_str |
ABCM-2 |
network_name_str |
Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) |
repository_id_str |
|
spelling |
Numerical simulations of flows over a rotating circular cylinder using the immersed boundary methodimmersed boundary methodvirtual physical modelrotating cylindervortex sheddingIn this paper, numerical simulations of incompressible flows around rotating circular cylinders have been performed. The two-dimensional Navier-Stokes equations are solved by using a Cartesian non-uniform grid. The Immersed Boundary Method (IBM) with the Virtual Physical Model (VPM) was used in order to model the presence of the circular cylinder in the flow. The fractional time step method was used to coupling the pressure and velocity fields. The simulations were carried out for Reynolds numbers equals to 60, 100 and 200 for different specific rotations. The effects of rotation on flow characteristics and fluctuating forces were investigated. The Strouhal number, obtained by performing the Fast Fourier Transform (FFT) of the temporal distribution of the lift coefficient, and the pressure coefficients, were also been calculated. Vorticity contours are presented considering different values of the Reynolds number and specific rotation. The numerical results obtained are compared to those obtained by other authors and the usefulness of the numerical methodology composed by the combination of the IBM with the VPM to simulate flows in the presence of mobile bodies is highlighted.Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM2011-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782011000100014Journal of the Brazilian Society of Mechanical Sciences and Engineering v.33 n.1 2011reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/S1678-58782011000100014info:eu-repo/semantics/openAccessSilva,Alice Rosa daSilveira Neto,Aristeu daLima,Antonio Marcos G. deRade,Domingos Alveseng2011-05-02T00:00:00Zoai:scielo:S1678-58782011000100014Revistahttps://www.scielo.br/j/jbsmse/https://old.scielo.br/oai/scielo-oai.php||abcm@abcm.org.br1806-36911678-5878opendoar:2011-05-02T00:00Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false |
dc.title.none.fl_str_mv |
Numerical simulations of flows over a rotating circular cylinder using the immersed boundary method |
title |
Numerical simulations of flows over a rotating circular cylinder using the immersed boundary method |
spellingShingle |
Numerical simulations of flows over a rotating circular cylinder using the immersed boundary method Silva,Alice Rosa da immersed boundary method virtual physical model rotating cylinder vortex shedding |
title_short |
Numerical simulations of flows over a rotating circular cylinder using the immersed boundary method |
title_full |
Numerical simulations of flows over a rotating circular cylinder using the immersed boundary method |
title_fullStr |
Numerical simulations of flows over a rotating circular cylinder using the immersed boundary method |
title_full_unstemmed |
Numerical simulations of flows over a rotating circular cylinder using the immersed boundary method |
title_sort |
Numerical simulations of flows over a rotating circular cylinder using the immersed boundary method |
author |
Silva,Alice Rosa da |
author_facet |
Silva,Alice Rosa da Silveira Neto,Aristeu da Lima,Antonio Marcos G. de Rade,Domingos Alves |
author_role |
author |
author2 |
Silveira Neto,Aristeu da Lima,Antonio Marcos G. de Rade,Domingos Alves |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Silva,Alice Rosa da Silveira Neto,Aristeu da Lima,Antonio Marcos G. de Rade,Domingos Alves |
dc.subject.por.fl_str_mv |
immersed boundary method virtual physical model rotating cylinder vortex shedding |
topic |
immersed boundary method virtual physical model rotating cylinder vortex shedding |
description |
In this paper, numerical simulations of incompressible flows around rotating circular cylinders have been performed. The two-dimensional Navier-Stokes equations are solved by using a Cartesian non-uniform grid. The Immersed Boundary Method (IBM) with the Virtual Physical Model (VPM) was used in order to model the presence of the circular cylinder in the flow. The fractional time step method was used to coupling the pressure and velocity fields. The simulations were carried out for Reynolds numbers equals to 60, 100 and 200 for different specific rotations. The effects of rotation on flow characteristics and fluctuating forces were investigated. The Strouhal number, obtained by performing the Fast Fourier Transform (FFT) of the temporal distribution of the lift coefficient, and the pressure coefficients, were also been calculated. Vorticity contours are presented considering different values of the Reynolds number and specific rotation. The numerical results obtained are compared to those obtained by other authors and the usefulness of the numerical methodology composed by the combination of the IBM with the VPM to simulate flows in the presence of mobile bodies is highlighted. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-03-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782011000100014 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782011000100014 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1678-58782011000100014 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM |
publisher.none.fl_str_mv |
Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM |
dc.source.none.fl_str_mv |
Journal of the Brazilian Society of Mechanical Sciences and Engineering v.33 n.1 2011 reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) instacron:ABCM |
instname_str |
Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
instacron_str |
ABCM |
institution |
ABCM |
reponame_str |
Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) |
collection |
Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) |
repository.name.fl_str_mv |
Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
repository.mail.fl_str_mv |
||abcm@abcm.org.br |
_version_ |
1754734681876594688 |