A hybrid approach for estimating the drawbead restraining force in sheet metal forming

Detalhes bibliográficos
Autor(a) principal: Duarte,E. N.
Data de Publicação: 2010
Outros Autores: Oliveira,S. A. G., Weyler,R., Neamtu,L.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782010000300012
Resumo: In order to achieve better part quality in sheet metal forming the rate of the material flow into the die cavity must be efficiently controlled. This control is obtained using a restraining force supplied either by the blankholder tool, drawbeads or both. When the restraining force required is too high, the use of drawbeads is necessary, although excessive blank deformation may be produced. Some other disadvantages such as adjustment difficulties during die try-outs to determine the actual Drawbead Restraining Force (DBRF) may also be encountered. One way to solve these problems and to reduce the number of die try-outs - which are very much time consuming - is to introduce/define accurate enough drawbead concepts. The present study will make use of a method that has been developed using the similitude approach in order to understand the influence of the most important parameters on DBRF and to establish a pre-estimate DBRF theory. Data bases have been developed throughout Explicit Dynamic Finite Element Method (EDFEM) based simulations. The results are compared with experimental data bases provided by Nine (1978) and with the analytical model of Stoughton (1988) results. The average of absolute error with respect to experimental data bases was around 6% and, for the studied cases, the maximum discrepancy was found to be below 11%. For the analytical and experimental cases, the average of absolute error was approximately 5% and, for the studied cases, the maximum error was below 7%. In terms of precision, the predictions derived from this approach are adequate when compared with analytical and experimental results. For this reason, the approach has been validated and accepted as a contribution to STAMPACK®, a commercial explicit dynamic finite element based system for forming processes numerical simulation.
id ABCM-2_ffa6001e3a43e40f5894ceb4c77f4a4a
oai_identifier_str oai:scielo:S1678-58782010000300012
network_acronym_str ABCM-2
network_name_str Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
repository_id_str
spelling A hybrid approach for estimating the drawbead restraining force in sheet metal formingdrawbeadrestraining forcefinite element methodsheet metal formingIn order to achieve better part quality in sheet metal forming the rate of the material flow into the die cavity must be efficiently controlled. This control is obtained using a restraining force supplied either by the blankholder tool, drawbeads or both. When the restraining force required is too high, the use of drawbeads is necessary, although excessive blank deformation may be produced. Some other disadvantages such as adjustment difficulties during die try-outs to determine the actual Drawbead Restraining Force (DBRF) may also be encountered. One way to solve these problems and to reduce the number of die try-outs - which are very much time consuming - is to introduce/define accurate enough drawbead concepts. The present study will make use of a method that has been developed using the similitude approach in order to understand the influence of the most important parameters on DBRF and to establish a pre-estimate DBRF theory. Data bases have been developed throughout Explicit Dynamic Finite Element Method (EDFEM) based simulations. The results are compared with experimental data bases provided by Nine (1978) and with the analytical model of Stoughton (1988) results. The average of absolute error with respect to experimental data bases was around 6% and, for the studied cases, the maximum discrepancy was found to be below 11%. For the analytical and experimental cases, the average of absolute error was approximately 5% and, for the studied cases, the maximum error was below 7%. In terms of precision, the predictions derived from this approach are adequate when compared with analytical and experimental results. For this reason, the approach has been validated and accepted as a contribution to STAMPACK®, a commercial explicit dynamic finite element based system for forming processes numerical simulation.Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM2010-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782010000300012Journal of the Brazilian Society of Mechanical Sciences and Engineering v.32 n.3 2010reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)instacron:ABCM10.1590/S1678-58782010000300012info:eu-repo/semantics/openAccessDuarte,E. N.Oliveira,S. A. G.Weyler,R.Neamtu,L.eng2010-12-01T00:00:00Zoai:scielo:S1678-58782010000300012Revistahttps://www.scielo.br/j/jbsmse/https://old.scielo.br/oai/scielo-oai.php||abcm@abcm.org.br1806-36911678-5878opendoar:2010-12-01T00:00Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)false
dc.title.none.fl_str_mv A hybrid approach for estimating the drawbead restraining force in sheet metal forming
title A hybrid approach for estimating the drawbead restraining force in sheet metal forming
spellingShingle A hybrid approach for estimating the drawbead restraining force in sheet metal forming
Duarte,E. N.
drawbead
restraining force
finite element method
sheet metal forming
title_short A hybrid approach for estimating the drawbead restraining force in sheet metal forming
title_full A hybrid approach for estimating the drawbead restraining force in sheet metal forming
title_fullStr A hybrid approach for estimating the drawbead restraining force in sheet metal forming
title_full_unstemmed A hybrid approach for estimating the drawbead restraining force in sheet metal forming
title_sort A hybrid approach for estimating the drawbead restraining force in sheet metal forming
author Duarte,E. N.
author_facet Duarte,E. N.
Oliveira,S. A. G.
Weyler,R.
Neamtu,L.
author_role author
author2 Oliveira,S. A. G.
Weyler,R.
Neamtu,L.
author2_role author
author
author
dc.contributor.author.fl_str_mv Duarte,E. N.
Oliveira,S. A. G.
Weyler,R.
Neamtu,L.
dc.subject.por.fl_str_mv drawbead
restraining force
finite element method
sheet metal forming
topic drawbead
restraining force
finite element method
sheet metal forming
description In order to achieve better part quality in sheet metal forming the rate of the material flow into the die cavity must be efficiently controlled. This control is obtained using a restraining force supplied either by the blankholder tool, drawbeads or both. When the restraining force required is too high, the use of drawbeads is necessary, although excessive blank deformation may be produced. Some other disadvantages such as adjustment difficulties during die try-outs to determine the actual Drawbead Restraining Force (DBRF) may also be encountered. One way to solve these problems and to reduce the number of die try-outs - which are very much time consuming - is to introduce/define accurate enough drawbead concepts. The present study will make use of a method that has been developed using the similitude approach in order to understand the influence of the most important parameters on DBRF and to establish a pre-estimate DBRF theory. Data bases have been developed throughout Explicit Dynamic Finite Element Method (EDFEM) based simulations. The results are compared with experimental data bases provided by Nine (1978) and with the analytical model of Stoughton (1988) results. The average of absolute error with respect to experimental data bases was around 6% and, for the studied cases, the maximum discrepancy was found to be below 11%. For the analytical and experimental cases, the average of absolute error was approximately 5% and, for the studied cases, the maximum error was below 7%. In terms of precision, the predictions derived from this approach are adequate when compared with analytical and experimental results. For this reason, the approach has been validated and accepted as a contribution to STAMPACK®, a commercial explicit dynamic finite element based system for forming processes numerical simulation.
publishDate 2010
dc.date.none.fl_str_mv 2010-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782010000300012
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-58782010000300012
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1678-58782010000300012
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM
publisher.none.fl_str_mv Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM
dc.source.none.fl_str_mv Journal of the Brazilian Society of Mechanical Sciences and Engineering v.32 n.3 2010
reponame:Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
instname:Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron:ABCM
instname_str Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
instacron_str ABCM
institution ABCM
reponame_str Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
collection Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online)
repository.name.fl_str_mv Journal of the Brazilian Society of Mechanical Sciences and Engineering (Online) - Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)
repository.mail.fl_str_mv ||abcm@abcm.org.br
_version_ 1754734681813680128