Emodin protects H9c2 cells from hypoxia-induced injury by up-regulating miR-138 expression
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Medical and Biological Research |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2019000300603 |
Resumo: | Myocardial infarction (MI) is a common presentation for ischemic heart disease, which is a leading cause of death. Emodin is a Chinese herbal anthraquinone used in several diseases. However, the effect of emodin in hypoxia-induced injury in cardiomyocytes has not been clearly elucidated. Our study aimed to clarify the functions of emodin in hypoxia-induced injury in rat cardiomyocytes H9c2 and explore the underlying mechanism. The effects of emodin on cell viability and apoptosis were analyzed by the Cell counting kit-8 assay and flow cytometry assay, respectively. The cell proliferation- and cell apoptosis-related proteins were detected by western blot. qRT-PCR was used to determine the relative expression of miR-138. Cell transfection was performed to alter miR-138 and MLK3 expression. miR-138 target was performed by dual luciferase activity assay. Sirt1/AKT and Wnt/β-catenin pathways-related factors phosphorylation were analyzed by western blot. Emodin inhibited hypoxia-induced injury in H9c2 cells by promoting cell viability and reducing cell apoptosis. miR-138 was down-regulated by hypoxia treatment but up-regulated by emodin. Up-regulation of miR-138 alleviated hypoxia-induced cell injury. Down-regulation of miR-138 attenuated the growth-promoting effect of emodin on hypoxia-induced injury, whereas up-regulation of miR-138 enhanced the growth-promoting effects of emodin. The underlying mechanism might be by inactivating Sirt1/AKT and Wnt/β-catenin pathways. MLK3 was negatively regulated by miR-138 expression and inactivated Sirt1/AKT and Wnt/β-catenin pathways. Emodin alleviated hypoxia-induced injury in H9c2 cells via up-regulation of miR-138 modulated by MLK3, as well as by activating Sirt1/AKT and Wnt/β-catenin pathways. |
id |
ABDC-1_127737f9fd0e63b3ef357ea079579fac |
---|---|
oai_identifier_str |
oai:scielo:S0100-879X2019000300603 |
network_acronym_str |
ABDC-1 |
network_name_str |
Brazilian Journal of Medical and Biological Research |
repository_id_str |
|
spelling |
Emodin protects H9c2 cells from hypoxia-induced injury by up-regulating miR-138 expressionEmodinMyocardial infarctionHypoxia injurymiR-138Sirt1/AKT pathwayWnt/β-catenin pathwayMyocardial infarction (MI) is a common presentation for ischemic heart disease, which is a leading cause of death. Emodin is a Chinese herbal anthraquinone used in several diseases. However, the effect of emodin in hypoxia-induced injury in cardiomyocytes has not been clearly elucidated. Our study aimed to clarify the functions of emodin in hypoxia-induced injury in rat cardiomyocytes H9c2 and explore the underlying mechanism. The effects of emodin on cell viability and apoptosis were analyzed by the Cell counting kit-8 assay and flow cytometry assay, respectively. The cell proliferation- and cell apoptosis-related proteins were detected by western blot. qRT-PCR was used to determine the relative expression of miR-138. Cell transfection was performed to alter miR-138 and MLK3 expression. miR-138 target was performed by dual luciferase activity assay. Sirt1/AKT and Wnt/β-catenin pathways-related factors phosphorylation were analyzed by western blot. Emodin inhibited hypoxia-induced injury in H9c2 cells by promoting cell viability and reducing cell apoptosis. miR-138 was down-regulated by hypoxia treatment but up-regulated by emodin. Up-regulation of miR-138 alleviated hypoxia-induced cell injury. Down-regulation of miR-138 attenuated the growth-promoting effect of emodin on hypoxia-induced injury, whereas up-regulation of miR-138 enhanced the growth-promoting effects of emodin. The underlying mechanism might be by inactivating Sirt1/AKT and Wnt/β-catenin pathways. MLK3 was negatively regulated by miR-138 expression and inactivated Sirt1/AKT and Wnt/β-catenin pathways. Emodin alleviated hypoxia-induced injury in H9c2 cells via up-regulation of miR-138 modulated by MLK3, as well as by activating Sirt1/AKT and Wnt/β-catenin pathways.Associação Brasileira de Divulgação Científica2019-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2019000300603Brazilian Journal of Medical and Biological Research v.52 n.3 2019reponame:Brazilian Journal of Medical and Biological Researchinstname:Associação Brasileira de Divulgação Científica (ABDC)instacron:ABDC10.1590/1414-431x20187994info:eu-repo/semantics/openAccessZhang,XuezhiQin,QiaojiDai,HongyanCai,ShanglangZhou,ChangyongGuan,Juneng2019-03-18T00:00:00Zoai:scielo:S0100-879X2019000300603Revistahttps://www.bjournal.org/https://old.scielo.br/oai/scielo-oai.phpbjournal@terra.com.br||bjournal@terra.com.br1414-431X0100-879Xopendoar:2019-03-18T00:00Brazilian Journal of Medical and Biological Research - Associação Brasileira de Divulgação Científica (ABDC)false |
dc.title.none.fl_str_mv |
Emodin protects H9c2 cells from hypoxia-induced injury by up-regulating miR-138 expression |
title |
Emodin protects H9c2 cells from hypoxia-induced injury by up-regulating miR-138 expression |
spellingShingle |
Emodin protects H9c2 cells from hypoxia-induced injury by up-regulating miR-138 expression Zhang,Xuezhi Emodin Myocardial infarction Hypoxia injury miR-138 Sirt1/AKT pathway Wnt/β-catenin pathway |
title_short |
Emodin protects H9c2 cells from hypoxia-induced injury by up-regulating miR-138 expression |
title_full |
Emodin protects H9c2 cells from hypoxia-induced injury by up-regulating miR-138 expression |
title_fullStr |
Emodin protects H9c2 cells from hypoxia-induced injury by up-regulating miR-138 expression |
title_full_unstemmed |
Emodin protects H9c2 cells from hypoxia-induced injury by up-regulating miR-138 expression |
title_sort |
Emodin protects H9c2 cells from hypoxia-induced injury by up-regulating miR-138 expression |
author |
Zhang,Xuezhi |
author_facet |
Zhang,Xuezhi Qin,Qiaoji Dai,Hongyan Cai,Shanglang Zhou,Changyong Guan,Jun |
author_role |
author |
author2 |
Qin,Qiaoji Dai,Hongyan Cai,Shanglang Zhou,Changyong Guan,Jun |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Zhang,Xuezhi Qin,Qiaoji Dai,Hongyan Cai,Shanglang Zhou,Changyong Guan,Jun |
dc.subject.por.fl_str_mv |
Emodin Myocardial infarction Hypoxia injury miR-138 Sirt1/AKT pathway Wnt/β-catenin pathway |
topic |
Emodin Myocardial infarction Hypoxia injury miR-138 Sirt1/AKT pathway Wnt/β-catenin pathway |
description |
Myocardial infarction (MI) is a common presentation for ischemic heart disease, which is a leading cause of death. Emodin is a Chinese herbal anthraquinone used in several diseases. However, the effect of emodin in hypoxia-induced injury in cardiomyocytes has not been clearly elucidated. Our study aimed to clarify the functions of emodin in hypoxia-induced injury in rat cardiomyocytes H9c2 and explore the underlying mechanism. The effects of emodin on cell viability and apoptosis were analyzed by the Cell counting kit-8 assay and flow cytometry assay, respectively. The cell proliferation- and cell apoptosis-related proteins were detected by western blot. qRT-PCR was used to determine the relative expression of miR-138. Cell transfection was performed to alter miR-138 and MLK3 expression. miR-138 target was performed by dual luciferase activity assay. Sirt1/AKT and Wnt/β-catenin pathways-related factors phosphorylation were analyzed by western blot. Emodin inhibited hypoxia-induced injury in H9c2 cells by promoting cell viability and reducing cell apoptosis. miR-138 was down-regulated by hypoxia treatment but up-regulated by emodin. Up-regulation of miR-138 alleviated hypoxia-induced cell injury. Down-regulation of miR-138 attenuated the growth-promoting effect of emodin on hypoxia-induced injury, whereas up-regulation of miR-138 enhanced the growth-promoting effects of emodin. The underlying mechanism might be by inactivating Sirt1/AKT and Wnt/β-catenin pathways. MLK3 was negatively regulated by miR-138 expression and inactivated Sirt1/AKT and Wnt/β-catenin pathways. Emodin alleviated hypoxia-induced injury in H9c2 cells via up-regulation of miR-138 modulated by MLK3, as well as by activating Sirt1/AKT and Wnt/β-catenin pathways. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2019000300603 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2019000300603 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1414-431x20187994 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Divulgação Científica |
publisher.none.fl_str_mv |
Associação Brasileira de Divulgação Científica |
dc.source.none.fl_str_mv |
Brazilian Journal of Medical and Biological Research v.52 n.3 2019 reponame:Brazilian Journal of Medical and Biological Research instname:Associação Brasileira de Divulgação Científica (ABDC) instacron:ABDC |
instname_str |
Associação Brasileira de Divulgação Científica (ABDC) |
instacron_str |
ABDC |
institution |
ABDC |
reponame_str |
Brazilian Journal of Medical and Biological Research |
collection |
Brazilian Journal of Medical and Biological Research |
repository.name.fl_str_mv |
Brazilian Journal of Medical and Biological Research - Associação Brasileira de Divulgação Científica (ABDC) |
repository.mail.fl_str_mv |
bjournal@terra.com.br||bjournal@terra.com.br |
_version_ |
1754302946857713664 |