Fat gain with physical detraining is correlated with increased glucose transport and oxidation in periepididymal white adipose tissue in rats
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Medical and Biological Research |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2015000700650 |
Resumo: | As it is a common observation that obesity tends to occur after discontinuation of exercise, we investigated how white adipocytes isolated from the periepididymal fat of animals with interrupted physical training transport and oxidize glucose, and whether these adaptations support the weight regain seen after 4 weeks of physical detraining. Male Wistar rats (45 days old, weighing 200 g) were divided into two groups (n=10): group D (detrained), trained for 8 weeks and detrained for 4 weeks; and group S (sedentary). The physical exercise was carried out on a treadmill for 60 min/day, 5 days/week for 8 weeks, at 50-60% of the maximum running capacity. After the training protocol, adipocytes isolated from the periepididymal adipose tissue were submitted to glucose uptake and oxidation tests. Adipocytes from detrained animals increased their glucose uptake capacity by 18.5% compared with those from sedentary animals (P<0.05). The same cells also showed a greater glucose oxidation capacity in response to insulin stimulation (34.55%) compared with those from the S group (P<0.05). We hypothesize that, owing to the more intense glucose entrance into adipose cells from detrained rats, more substrate became available for triacylglycerol synthesis. Furthermore, this increased glucose oxidation rate allowed an increase in energy supply for triacylglycerol synthesis. Thus, physical detraining might play a role as a possible obesogenic factor for increasing glucose uptake and oxidation by adipocytes. |
id |
ABDC-1_4580c98a35f801964937454114cab24b |
---|---|
oai_identifier_str |
oai:scielo:S0100-879X2015000700650 |
network_acronym_str |
ABDC-1 |
network_name_str |
Brazilian Journal of Medical and Biological Research |
repository_id_str |
|
spelling |
Fat gain with physical detraining is correlated with increased glucose transport and oxidation in periepididymal white adipose tissue in ratsPhysical detrainingAdipocytesGlucose uptakeGlucose oxidationLipogenesisAs it is a common observation that obesity tends to occur after discontinuation of exercise, we investigated how white adipocytes isolated from the periepididymal fat of animals with interrupted physical training transport and oxidize glucose, and whether these adaptations support the weight regain seen after 4 weeks of physical detraining. Male Wistar rats (45 days old, weighing 200 g) were divided into two groups (n=10): group D (detrained), trained for 8 weeks and detrained for 4 weeks; and group S (sedentary). The physical exercise was carried out on a treadmill for 60 min/day, 5 days/week for 8 weeks, at 50-60% of the maximum running capacity. After the training protocol, adipocytes isolated from the periepididymal adipose tissue were submitted to glucose uptake and oxidation tests. Adipocytes from detrained animals increased their glucose uptake capacity by 18.5% compared with those from sedentary animals (P<0.05). The same cells also showed a greater glucose oxidation capacity in response to insulin stimulation (34.55%) compared with those from the S group (P<0.05). We hypothesize that, owing to the more intense glucose entrance into adipose cells from detrained rats, more substrate became available for triacylglycerol synthesis. Furthermore, this increased glucose oxidation rate allowed an increase in energy supply for triacylglycerol synthesis. Thus, physical detraining might play a role as a possible obesogenic factor for increasing glucose uptake and oxidation by adipocytes.Associação Brasileira de Divulgação Científica2015-07-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2015000700650Brazilian Journal of Medical and Biological Research v.48 n.7 2015reponame:Brazilian Journal of Medical and Biological Researchinstname:Associação Brasileira de Divulgação Científica (ABDC)instacron:ABDC10.1590/1414-431x20154356info:eu-repo/semantics/openAccessSertié,R.A.L.Andreotti,S.Proença,A.R.G.Campaña,A.B.Lima,F.B.eng2019-03-18T00:00:00Zoai:scielo:S0100-879X2015000700650Revistahttps://www.bjournal.org/https://old.scielo.br/oai/scielo-oai.phpbjournal@terra.com.br||bjournal@terra.com.br1414-431X0100-879Xopendoar:2019-03-18T00:00Brazilian Journal of Medical and Biological Research - Associação Brasileira de Divulgação Científica (ABDC)false |
dc.title.none.fl_str_mv |
Fat gain with physical detraining is correlated with increased glucose transport and oxidation in periepididymal white adipose tissue in rats |
title |
Fat gain with physical detraining is correlated with increased glucose transport and oxidation in periepididymal white adipose tissue in rats |
spellingShingle |
Fat gain with physical detraining is correlated with increased glucose transport and oxidation in periepididymal white adipose tissue in rats Sertié,R.A.L. Physical detraining Adipocytes Glucose uptake Glucose oxidation Lipogenesis |
title_short |
Fat gain with physical detraining is correlated with increased glucose transport and oxidation in periepididymal white adipose tissue in rats |
title_full |
Fat gain with physical detraining is correlated with increased glucose transport and oxidation in periepididymal white adipose tissue in rats |
title_fullStr |
Fat gain with physical detraining is correlated with increased glucose transport and oxidation in periepididymal white adipose tissue in rats |
title_full_unstemmed |
Fat gain with physical detraining is correlated with increased glucose transport and oxidation in periepididymal white adipose tissue in rats |
title_sort |
Fat gain with physical detraining is correlated with increased glucose transport and oxidation in periepididymal white adipose tissue in rats |
author |
Sertié,R.A.L. |
author_facet |
Sertié,R.A.L. Andreotti,S. Proença,A.R.G. Campaña,A.B. Lima,F.B. |
author_role |
author |
author2 |
Andreotti,S. Proença,A.R.G. Campaña,A.B. Lima,F.B. |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Sertié,R.A.L. Andreotti,S. Proença,A.R.G. Campaña,A.B. Lima,F.B. |
dc.subject.por.fl_str_mv |
Physical detraining Adipocytes Glucose uptake Glucose oxidation Lipogenesis |
topic |
Physical detraining Adipocytes Glucose uptake Glucose oxidation Lipogenesis |
description |
As it is a common observation that obesity tends to occur after discontinuation of exercise, we investigated how white adipocytes isolated from the periepididymal fat of animals with interrupted physical training transport and oxidize glucose, and whether these adaptations support the weight regain seen after 4 weeks of physical detraining. Male Wistar rats (45 days old, weighing 200 g) were divided into two groups (n=10): group D (detrained), trained for 8 weeks and detrained for 4 weeks; and group S (sedentary). The physical exercise was carried out on a treadmill for 60 min/day, 5 days/week for 8 weeks, at 50-60% of the maximum running capacity. After the training protocol, adipocytes isolated from the periepididymal adipose tissue were submitted to glucose uptake and oxidation tests. Adipocytes from detrained animals increased their glucose uptake capacity by 18.5% compared with those from sedentary animals (P<0.05). The same cells also showed a greater glucose oxidation capacity in response to insulin stimulation (34.55%) compared with those from the S group (P<0.05). We hypothesize that, owing to the more intense glucose entrance into adipose cells from detrained rats, more substrate became available for triacylglycerol synthesis. Furthermore, this increased glucose oxidation rate allowed an increase in energy supply for triacylglycerol synthesis. Thus, physical detraining might play a role as a possible obesogenic factor for increasing glucose uptake and oxidation by adipocytes. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-07-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2015000700650 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2015000700650 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1414-431x20154356 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Divulgação Científica |
publisher.none.fl_str_mv |
Associação Brasileira de Divulgação Científica |
dc.source.none.fl_str_mv |
Brazilian Journal of Medical and Biological Research v.48 n.7 2015 reponame:Brazilian Journal of Medical and Biological Research instname:Associação Brasileira de Divulgação Científica (ABDC) instacron:ABDC |
instname_str |
Associação Brasileira de Divulgação Científica (ABDC) |
instacron_str |
ABDC |
institution |
ABDC |
reponame_str |
Brazilian Journal of Medical and Biological Research |
collection |
Brazilian Journal of Medical and Biological Research |
repository.name.fl_str_mv |
Brazilian Journal of Medical and Biological Research - Associação Brasileira de Divulgação Científica (ABDC) |
repository.mail.fl_str_mv |
bjournal@terra.com.br||bjournal@terra.com.br |
_version_ |
1754302944581255168 |