Identification of potential molecular mechanisms and small molecule drugs in myocardial ischemia/reperfusion injury
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Medical and Biological Research |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2020000900604 |
Resumo: | Myocardial ischemia/reperfusion (MI/R) injury is a complex phenomenon that causes severe damage to the myocardium. However, the potential molecular mechanisms of MI/R injury have not been fully clarified. We identified potential molecular mechanisms and therapeutic targets in MI/R injury through analysis of Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were found between MI/R injury and normal samples, and overlapping DEGs were found between GSE61592 and GSE67308. Gene Ontology (GO) and pathway analysis were performed for overlapping DEGs by Database for Annotation, Visualization and Integration Discovery (DAVID). Then, a network of protein-protein interaction (PPI) was constructed through the Search Tool for the Retrieval of Interacting Genes (STRING) database. Potential microRNAs (miRNAs) and therapeutic small molecules were screened out using microRNA.org database and the Comparative Toxicogenomics database (CTD), respectively. Finally, we identified 21 overlapping DEGs related to MI/R injury. These DEGs were significantly enriched in IL-17 signaling pathway, cytosolic DNA-sensing pathway, chemokine signaling, and cytokine-cytokine receptor interaction pathway. According to the degree in the PPI network, CCL2, LCN2, HP, CCL7, HMOX1, CCL4, and S100A8 were found to be hub genes. Furthermore, we identified potential miRNAs (miR-24-3p, miR-26b-5p, miR-2861, miR-217, miR-4251, and miR-124-3p) and therapeutic small molecules like ozone, troglitazone, rosiglitazone, and n-3 polyunsaturated fatty acids for MI/R injury. These results identified hub genes and potential small molecule drugs, which could contribute to the understanding of molecular mechanisms and treatment for MI/R injury. |
id |
ABDC-1_486db6b24a18c2b78269d1d308febb65 |
---|---|
oai_identifier_str |
oai:scielo:S0100-879X2020000900604 |
network_acronym_str |
ABDC-1 |
network_name_str |
Brazilian Journal of Medical and Biological Research |
repository_id_str |
|
spelling |
Identification of potential molecular mechanisms and small molecule drugs in myocardial ischemia/reperfusion injuryMyocardial ischemia/reperfusion injuryBioinformatics analysisDifferentially expressed genesHub genesSmall moleculesMyocardial ischemia/reperfusion (MI/R) injury is a complex phenomenon that causes severe damage to the myocardium. However, the potential molecular mechanisms of MI/R injury have not been fully clarified. We identified potential molecular mechanisms and therapeutic targets in MI/R injury through analysis of Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were found between MI/R injury and normal samples, and overlapping DEGs were found between GSE61592 and GSE67308. Gene Ontology (GO) and pathway analysis were performed for overlapping DEGs by Database for Annotation, Visualization and Integration Discovery (DAVID). Then, a network of protein-protein interaction (PPI) was constructed through the Search Tool for the Retrieval of Interacting Genes (STRING) database. Potential microRNAs (miRNAs) and therapeutic small molecules were screened out using microRNA.org database and the Comparative Toxicogenomics database (CTD), respectively. Finally, we identified 21 overlapping DEGs related to MI/R injury. These DEGs were significantly enriched in IL-17 signaling pathway, cytosolic DNA-sensing pathway, chemokine signaling, and cytokine-cytokine receptor interaction pathway. According to the degree in the PPI network, CCL2, LCN2, HP, CCL7, HMOX1, CCL4, and S100A8 were found to be hub genes. Furthermore, we identified potential miRNAs (miR-24-3p, miR-26b-5p, miR-2861, miR-217, miR-4251, and miR-124-3p) and therapeutic small molecules like ozone, troglitazone, rosiglitazone, and n-3 polyunsaturated fatty acids for MI/R injury. These results identified hub genes and potential small molecule drugs, which could contribute to the understanding of molecular mechanisms and treatment for MI/R injury.Associação Brasileira de Divulgação Científica2020-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2020000900604Brazilian Journal of Medical and Biological Research v.53 n.9 2020reponame:Brazilian Journal of Medical and Biological Researchinstname:Associação Brasileira de Divulgação Científica (ABDC)instacron:ABDC10.1590/1414-431x20209717info:eu-repo/semantics/openAccessJiang,TaoLiu,YingcunChen,BiaoSi,Liangyieng2020-07-14T00:00:00Zoai:scielo:S0100-879X2020000900604Revistahttps://www.bjournal.org/https://old.scielo.br/oai/scielo-oai.phpbjournal@terra.com.br||bjournal@terra.com.br1414-431X0100-879Xopendoar:2020-07-14T00:00Brazilian Journal of Medical and Biological Research - Associação Brasileira de Divulgação Científica (ABDC)false |
dc.title.none.fl_str_mv |
Identification of potential molecular mechanisms and small molecule drugs in myocardial ischemia/reperfusion injury |
title |
Identification of potential molecular mechanisms and small molecule drugs in myocardial ischemia/reperfusion injury |
spellingShingle |
Identification of potential molecular mechanisms and small molecule drugs in myocardial ischemia/reperfusion injury Jiang,Tao Myocardial ischemia/reperfusion injury Bioinformatics analysis Differentially expressed genes Hub genes Small molecules |
title_short |
Identification of potential molecular mechanisms and small molecule drugs in myocardial ischemia/reperfusion injury |
title_full |
Identification of potential molecular mechanisms and small molecule drugs in myocardial ischemia/reperfusion injury |
title_fullStr |
Identification of potential molecular mechanisms and small molecule drugs in myocardial ischemia/reperfusion injury |
title_full_unstemmed |
Identification of potential molecular mechanisms and small molecule drugs in myocardial ischemia/reperfusion injury |
title_sort |
Identification of potential molecular mechanisms and small molecule drugs in myocardial ischemia/reperfusion injury |
author |
Jiang,Tao |
author_facet |
Jiang,Tao Liu,Yingcun Chen,Biao Si,Liangyi |
author_role |
author |
author2 |
Liu,Yingcun Chen,Biao Si,Liangyi |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Jiang,Tao Liu,Yingcun Chen,Biao Si,Liangyi |
dc.subject.por.fl_str_mv |
Myocardial ischemia/reperfusion injury Bioinformatics analysis Differentially expressed genes Hub genes Small molecules |
topic |
Myocardial ischemia/reperfusion injury Bioinformatics analysis Differentially expressed genes Hub genes Small molecules |
description |
Myocardial ischemia/reperfusion (MI/R) injury is a complex phenomenon that causes severe damage to the myocardium. However, the potential molecular mechanisms of MI/R injury have not been fully clarified. We identified potential molecular mechanisms and therapeutic targets in MI/R injury through analysis of Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were found between MI/R injury and normal samples, and overlapping DEGs were found between GSE61592 and GSE67308. Gene Ontology (GO) and pathway analysis were performed for overlapping DEGs by Database for Annotation, Visualization and Integration Discovery (DAVID). Then, a network of protein-protein interaction (PPI) was constructed through the Search Tool for the Retrieval of Interacting Genes (STRING) database. Potential microRNAs (miRNAs) and therapeutic small molecules were screened out using microRNA.org database and the Comparative Toxicogenomics database (CTD), respectively. Finally, we identified 21 overlapping DEGs related to MI/R injury. These DEGs were significantly enriched in IL-17 signaling pathway, cytosolic DNA-sensing pathway, chemokine signaling, and cytokine-cytokine receptor interaction pathway. According to the degree in the PPI network, CCL2, LCN2, HP, CCL7, HMOX1, CCL4, and S100A8 were found to be hub genes. Furthermore, we identified potential miRNAs (miR-24-3p, miR-26b-5p, miR-2861, miR-217, miR-4251, and miR-124-3p) and therapeutic small molecules like ozone, troglitazone, rosiglitazone, and n-3 polyunsaturated fatty acids for MI/R injury. These results identified hub genes and potential small molecule drugs, which could contribute to the understanding of molecular mechanisms and treatment for MI/R injury. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2020000900604 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2020000900604 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1414-431x20209717 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Divulgação Científica |
publisher.none.fl_str_mv |
Associação Brasileira de Divulgação Científica |
dc.source.none.fl_str_mv |
Brazilian Journal of Medical and Biological Research v.53 n.9 2020 reponame:Brazilian Journal of Medical and Biological Research instname:Associação Brasileira de Divulgação Científica (ABDC) instacron:ABDC |
instname_str |
Associação Brasileira de Divulgação Científica (ABDC) |
instacron_str |
ABDC |
institution |
ABDC |
reponame_str |
Brazilian Journal of Medical and Biological Research |
collection |
Brazilian Journal of Medical and Biological Research |
repository.name.fl_str_mv |
Brazilian Journal of Medical and Biological Research - Associação Brasileira de Divulgação Científica (ABDC) |
repository.mail.fl_str_mv |
bjournal@terra.com.br||bjournal@terra.com.br |
_version_ |
1754302947940892672 |