Glutamatergic neurotransmission modulates hypoxia-induced hyperventilation but not anapyrexia

Detalhes bibliográficos
Autor(a) principal: Paula,P.M. de
Data de Publicação: 2004
Outros Autores: Branco,L.G.S.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Medical and Biological Research
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2004001000019
Resumo: The interaction between pulmonary ventilation (V E) and body temperature (Tb) is essential for O2 delivery to match metabolic rate under varying states of metabolic demand. Hypoxia causes hyperventilation and anapyrexia (a regulated drop in Tb), but the neurotransmitters responsible for this interaction are not well known. Since L-glutamate is released centrally in response to peripheral chemoreceptor stimulation and glutamatergic receptors are spread in the central nervous system we tested the hypothesis that central L-glutamate mediates the ventilatory and thermal responses to hypoxia. We measured V E and Tb in 40 adult male Wistar rats (270 to 300 g) before and after intracerebroventricular injection of kynurenic acid (KYN, an ionotropic glutamatergic receptor antagonist), alpha-methyl-4-carboxyphenylglycine (MCPG, a metabotropic glutamatergic receptor antagonist) or vehicle (saline), followed by a 1-h period of hypoxia (7% inspired O2) or normoxia (humidified room air). Under normoxia, KYN (N = 5) or MCPG (N = 8) treatment did not affect V E or Tb compared to saline (N = 6). KYN and MCPG injection caused a decrease in hypoxia-induced hyperventilation (595 ± 49 for KYN, N = 7 and 525 ± 84 ml kg-1 min-1 for MCPG, N = 6; P < 0.05) but did not affect anapyrexia (35.3 ± 0.2 for KYN and 34.7 ± 0.4ºC for MCPG) compared to saline (912 ± 110 ml kg-1 min-1 and 34.8 ± 0.2ºC, N = 8). We conclude that glutamatergic receptors are involved in hypoxic hyperventilation but do not affect anapyrexia, indicating that L-glutamate is not a common mediator of this interaction.
id ABDC-1_51ba2fbb4d54782b3f20846b90526ce9
oai_identifier_str oai:scielo:S0100-879X2004001000019
network_acronym_str ABDC-1
network_name_str Brazilian Journal of Medical and Biological Research
repository_id_str
spelling Glutamatergic neurotransmission modulates hypoxia-induced hyperventilation but not anapyrexiaKynurenic acid-->alpha-Methyl-4-carboxyphenyl-glycine (MCPG)HypoxiaVentilationBody temperatureThe interaction between pulmonary ventilation (V E) and body temperature (Tb) is essential for O2 delivery to match metabolic rate under varying states of metabolic demand. Hypoxia causes hyperventilation and anapyrexia (a regulated drop in Tb), but the neurotransmitters responsible for this interaction are not well known. Since L-glutamate is released centrally in response to peripheral chemoreceptor stimulation and glutamatergic receptors are spread in the central nervous system we tested the hypothesis that central L-glutamate mediates the ventilatory and thermal responses to hypoxia. We measured V E and Tb in 40 adult male Wistar rats (270 to 300 g) before and after intracerebroventricular injection of kynurenic acid (KYN, an ionotropic glutamatergic receptor antagonist), alpha-methyl-4-carboxyphenylglycine (MCPG, a metabotropic glutamatergic receptor antagonist) or vehicle (saline), followed by a 1-h period of hypoxia (7% inspired O2) or normoxia (humidified room air). Under normoxia, KYN (N = 5) or MCPG (N = 8) treatment did not affect V E or Tb compared to saline (N = 6). KYN and MCPG injection caused a decrease in hypoxia-induced hyperventilation (595 ± 49 for KYN, N = 7 and 525 ± 84 ml kg-1 min-1 for MCPG, N = 6; P < 0.05) but did not affect anapyrexia (35.3 ± 0.2 for KYN and 34.7 ± 0.4ºC for MCPG) compared to saline (912 ± 110 ml kg-1 min-1 and 34.8 ± 0.2ºC, N = 8). We conclude that glutamatergic receptors are involved in hypoxic hyperventilation but do not affect anapyrexia, indicating that L-glutamate is not a common mediator of this interaction.Associação Brasileira de Divulgação Científica2004-10-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2004001000019Brazilian Journal of Medical and Biological Research v.37 n.10 2004reponame:Brazilian Journal of Medical and Biological Researchinstname:Associação Brasileira de Divulgação Científica (ABDC)instacron:ABDC10.1590/S0100-879X2004001000019info:eu-repo/semantics/openAccessPaula,P.M. deBranco,L.G.S.eng2004-09-22T00:00:00Zoai:scielo:S0100-879X2004001000019Revistahttps://www.bjournal.org/https://old.scielo.br/oai/scielo-oai.phpbjournal@terra.com.br||bjournal@terra.com.br1414-431X0100-879Xopendoar:2004-09-22T00:00Brazilian Journal of Medical and Biological Research - Associação Brasileira de Divulgação Científica (ABDC)false
dc.title.none.fl_str_mv Glutamatergic neurotransmission modulates hypoxia-induced hyperventilation but not anapyrexia
title Glutamatergic neurotransmission modulates hypoxia-induced hyperventilation but not anapyrexia
spellingShingle Glutamatergic neurotransmission modulates hypoxia-induced hyperventilation but not anapyrexia
Paula,P.M. de
Kynurenic acid
-->alpha-Methyl-4-carboxyphenyl-glycine (MCPG)
Hypoxia
Ventilation
Body temperature
title_short Glutamatergic neurotransmission modulates hypoxia-induced hyperventilation but not anapyrexia
title_full Glutamatergic neurotransmission modulates hypoxia-induced hyperventilation but not anapyrexia
title_fullStr Glutamatergic neurotransmission modulates hypoxia-induced hyperventilation but not anapyrexia
title_full_unstemmed Glutamatergic neurotransmission modulates hypoxia-induced hyperventilation but not anapyrexia
title_sort Glutamatergic neurotransmission modulates hypoxia-induced hyperventilation but not anapyrexia
author Paula,P.M. de
author_facet Paula,P.M. de
Branco,L.G.S.
author_role author
author2 Branco,L.G.S.
author2_role author
dc.contributor.author.fl_str_mv Paula,P.M. de
Branco,L.G.S.
dc.subject.por.fl_str_mv Kynurenic acid
-->alpha-Methyl-4-carboxyphenyl-glycine (MCPG)
Hypoxia
Ventilation
Body temperature
topic Kynurenic acid
-->alpha-Methyl-4-carboxyphenyl-glycine (MCPG)
Hypoxia
Ventilation
Body temperature
description The interaction between pulmonary ventilation (V E) and body temperature (Tb) is essential for O2 delivery to match metabolic rate under varying states of metabolic demand. Hypoxia causes hyperventilation and anapyrexia (a regulated drop in Tb), but the neurotransmitters responsible for this interaction are not well known. Since L-glutamate is released centrally in response to peripheral chemoreceptor stimulation and glutamatergic receptors are spread in the central nervous system we tested the hypothesis that central L-glutamate mediates the ventilatory and thermal responses to hypoxia. We measured V E and Tb in 40 adult male Wistar rats (270 to 300 g) before and after intracerebroventricular injection of kynurenic acid (KYN, an ionotropic glutamatergic receptor antagonist), alpha-methyl-4-carboxyphenylglycine (MCPG, a metabotropic glutamatergic receptor antagonist) or vehicle (saline), followed by a 1-h period of hypoxia (7% inspired O2) or normoxia (humidified room air). Under normoxia, KYN (N = 5) or MCPG (N = 8) treatment did not affect V E or Tb compared to saline (N = 6). KYN and MCPG injection caused a decrease in hypoxia-induced hyperventilation (595 ± 49 for KYN, N = 7 and 525 ± 84 ml kg-1 min-1 for MCPG, N = 6; P < 0.05) but did not affect anapyrexia (35.3 ± 0.2 for KYN and 34.7 ± 0.4ºC for MCPG) compared to saline (912 ± 110 ml kg-1 min-1 and 34.8 ± 0.2ºC, N = 8). We conclude that glutamatergic receptors are involved in hypoxic hyperventilation but do not affect anapyrexia, indicating that L-glutamate is not a common mediator of this interaction.
publishDate 2004
dc.date.none.fl_str_mv 2004-10-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2004001000019
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2004001000019
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0100-879X2004001000019
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Divulgação Científica
publisher.none.fl_str_mv Associação Brasileira de Divulgação Científica
dc.source.none.fl_str_mv Brazilian Journal of Medical and Biological Research v.37 n.10 2004
reponame:Brazilian Journal of Medical and Biological Research
instname:Associação Brasileira de Divulgação Científica (ABDC)
instacron:ABDC
instname_str Associação Brasileira de Divulgação Científica (ABDC)
instacron_str ABDC
institution ABDC
reponame_str Brazilian Journal of Medical and Biological Research
collection Brazilian Journal of Medical and Biological Research
repository.name.fl_str_mv Brazilian Journal of Medical and Biological Research - Associação Brasileira de Divulgação Científica (ABDC)
repository.mail.fl_str_mv bjournal@terra.com.br||bjournal@terra.com.br
_version_ 1754302933387706368