Immunity, virus evolution, and effectiveness of SARS-CoV-2 vaccines

Detalhes bibliográficos
Autor(a) principal: Belizário,J.E.
Data de Publicação: 2021
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Medical and Biological Research
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2021000500302
Resumo: Phylogenetic and pathogenesis studies of the severe acute respiratory syndrome-related coronaviruses (SARS-CoVs) strains have highlighted some specific mutations that could confer the RNA genome fitness advantages and immunological resistance for their rapid spread in the human population. The analyses of 30 kb RNA SARS-CoVs genome sequences, protein structures, and functions have provided us a perspective of how host-virus protein-protein complexes act to mediate virus infection. The open reading frame (ORF)1a and ORF1b translation yields 16 non-structural (nsp1-16) and 6 accessory proteins (p6, p7a, p8ab, p9b) with multiple functional domains. Viral proteins recruit over 300 host partners forming hetero-oligomeric complexes enabling the viral RNA synthesis, packing, and virion release. Many cellular host factors and the innate immune cells through pattern-recognition receptors and intracellular RNA sensor molecules act to inhibit virus entry and intracellular replication. However, non-structural ORF proteins hijack them and suppress interferon synthesis and its antiviral effects. Pro-inflammatory chemokines and cytokines storm leads to dysfunctional inflammation, lung injury, and several clinical symptoms in patients. During the global pandemic, COVID-19 patients were identified with non-synonymous substitution of G614D in the spike protein, indicating virus co-evolution in host cells. We review findings that suggest that host RNA editing and DNA repair systems, while carrying on recombination, mutation, and repair of viral RNA intermediates, may facilitate virus evolution. Understanding how the host cell RNA replication process may be driven by SARS-CoV-2 RNA genome fitness will help the testing of vaccines effectiveness to multiple independent mutated coronavirus strains that will emerge.
id ABDC-1_78696989079c302880426760228bf58c
oai_identifier_str oai:scielo:S0100-879X2021000500302
network_acronym_str ABDC-1
network_name_str Brazilian Journal of Medical and Biological Research
repository_id_str
spelling Immunity, virus evolution, and effectiveness of SARS-CoV-2 vaccinesSARS-CoV-2COVID-19ImmunityVirus evolutionVaccinesPhylogenetic and pathogenesis studies of the severe acute respiratory syndrome-related coronaviruses (SARS-CoVs) strains have highlighted some specific mutations that could confer the RNA genome fitness advantages and immunological resistance for their rapid spread in the human population. The analyses of 30 kb RNA SARS-CoVs genome sequences, protein structures, and functions have provided us a perspective of how host-virus protein-protein complexes act to mediate virus infection. The open reading frame (ORF)1a and ORF1b translation yields 16 non-structural (nsp1-16) and 6 accessory proteins (p6, p7a, p8ab, p9b) with multiple functional domains. Viral proteins recruit over 300 host partners forming hetero-oligomeric complexes enabling the viral RNA synthesis, packing, and virion release. Many cellular host factors and the innate immune cells through pattern-recognition receptors and intracellular RNA sensor molecules act to inhibit virus entry and intracellular replication. However, non-structural ORF proteins hijack them and suppress interferon synthesis and its antiviral effects. Pro-inflammatory chemokines and cytokines storm leads to dysfunctional inflammation, lung injury, and several clinical symptoms in patients. During the global pandemic, COVID-19 patients were identified with non-synonymous substitution of G614D in the spike protein, indicating virus co-evolution in host cells. We review findings that suggest that host RNA editing and DNA repair systems, while carrying on recombination, mutation, and repair of viral RNA intermediates, may facilitate virus evolution. Understanding how the host cell RNA replication process may be driven by SARS-CoV-2 RNA genome fitness will help the testing of vaccines effectiveness to multiple independent mutated coronavirus strains that will emerge.Associação Brasileira de Divulgação Científica2021-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2021000500302Brazilian Journal of Medical and Biological Research v.54 n.5 2021reponame:Brazilian Journal of Medical and Biological Researchinstname:Associação Brasileira de Divulgação Científica (ABDC)instacron:ABDC10.1590/1414-431x202010725info:eu-repo/semantics/openAccessBelizário,J.E.eng2021-03-10T00:00:00Zoai:scielo:S0100-879X2021000500302Revistahttps://www.bjournal.org/https://old.scielo.br/oai/scielo-oai.phpbjournal@terra.com.br||bjournal@terra.com.br1414-431X0100-879Xopendoar:2021-03-10T00:00Brazilian Journal of Medical and Biological Research - Associação Brasileira de Divulgação Científica (ABDC)false
dc.title.none.fl_str_mv Immunity, virus evolution, and effectiveness of SARS-CoV-2 vaccines
title Immunity, virus evolution, and effectiveness of SARS-CoV-2 vaccines
spellingShingle Immunity, virus evolution, and effectiveness of SARS-CoV-2 vaccines
Belizário,J.E.
SARS-CoV-2
COVID-19
Immunity
Virus evolution
Vaccines
title_short Immunity, virus evolution, and effectiveness of SARS-CoV-2 vaccines
title_full Immunity, virus evolution, and effectiveness of SARS-CoV-2 vaccines
title_fullStr Immunity, virus evolution, and effectiveness of SARS-CoV-2 vaccines
title_full_unstemmed Immunity, virus evolution, and effectiveness of SARS-CoV-2 vaccines
title_sort Immunity, virus evolution, and effectiveness of SARS-CoV-2 vaccines
author Belizário,J.E.
author_facet Belizário,J.E.
author_role author
dc.contributor.author.fl_str_mv Belizário,J.E.
dc.subject.por.fl_str_mv SARS-CoV-2
COVID-19
Immunity
Virus evolution
Vaccines
topic SARS-CoV-2
COVID-19
Immunity
Virus evolution
Vaccines
description Phylogenetic and pathogenesis studies of the severe acute respiratory syndrome-related coronaviruses (SARS-CoVs) strains have highlighted some specific mutations that could confer the RNA genome fitness advantages and immunological resistance for their rapid spread in the human population. The analyses of 30 kb RNA SARS-CoVs genome sequences, protein structures, and functions have provided us a perspective of how host-virus protein-protein complexes act to mediate virus infection. The open reading frame (ORF)1a and ORF1b translation yields 16 non-structural (nsp1-16) and 6 accessory proteins (p6, p7a, p8ab, p9b) with multiple functional domains. Viral proteins recruit over 300 host partners forming hetero-oligomeric complexes enabling the viral RNA synthesis, packing, and virion release. Many cellular host factors and the innate immune cells through pattern-recognition receptors and intracellular RNA sensor molecules act to inhibit virus entry and intracellular replication. However, non-structural ORF proteins hijack them and suppress interferon synthesis and its antiviral effects. Pro-inflammatory chemokines and cytokines storm leads to dysfunctional inflammation, lung injury, and several clinical symptoms in patients. During the global pandemic, COVID-19 patients were identified with non-synonymous substitution of G614D in the spike protein, indicating virus co-evolution in host cells. We review findings that suggest that host RNA editing and DNA repair systems, while carrying on recombination, mutation, and repair of viral RNA intermediates, may facilitate virus evolution. Understanding how the host cell RNA replication process may be driven by SARS-CoV-2 RNA genome fitness will help the testing of vaccines effectiveness to multiple independent mutated coronavirus strains that will emerge.
publishDate 2021
dc.date.none.fl_str_mv 2021-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2021000500302
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2021000500302
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1414-431x202010725
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Divulgação Científica
publisher.none.fl_str_mv Associação Brasileira de Divulgação Científica
dc.source.none.fl_str_mv Brazilian Journal of Medical and Biological Research v.54 n.5 2021
reponame:Brazilian Journal of Medical and Biological Research
instname:Associação Brasileira de Divulgação Científica (ABDC)
instacron:ABDC
instname_str Associação Brasileira de Divulgação Científica (ABDC)
instacron_str ABDC
institution ABDC
reponame_str Brazilian Journal of Medical and Biological Research
collection Brazilian Journal of Medical and Biological Research
repository.name.fl_str_mv Brazilian Journal of Medical and Biological Research - Associação Brasileira de Divulgação Científica (ABDC)
repository.mail.fl_str_mv bjournal@terra.com.br||bjournal@terra.com.br
_version_ 1754302948413800448