Protective roles of pulmonary rehabilitation mixture in experimental pulmonary fibrosis in vitro and in vivo
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Medical and Biological Research |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2015000600545 |
Resumo: | Abnormal high mobility group protein B1 (HMGB1) activation is involved in the pathogenesis of pulmonary fibrosis. Pulmonary rehabilitation mixture (PRM), which combines extracts from eight traditional Chinese medicines, has very good lung protection in clinical use. However, it is not known if PRM has anti-fibrotic activity. In this study, we investigated the effects of PRM on transforming growth factor-β1 (TGF-β1)-mediated and bleomycin (BLM)-induced pulmonary fibrosis in vitro and in vivo. The effects of PRM on TGF-β1-mediated epithelial-mesenchymal transition (EMT) in A549 cells, on the proliferation of human lung fibroblasts (HLF-1) in vitro, and on BLM-induced pulmonary fibrosis in vivo were investigated. PRM treatment resulted in a reduction of EMT in A549 cells that was associated with attenuating an increase of vimentin and a decrease of E-cadherin. PRM inhibited the proliferation of HLF-1 at an IC50 of 0.51 µg/mL. PRM ameliorated BLM-induced pulmonary fibrosis in rats, with reduction of histopathological scores and collagen deposition, and a decrease in α-smooth muscle actin (α-SMA) and HMGB1 expression. An increase in receptor for advanced glycation end-product (RAGE) expression was found in BLM-instilled lungs. PRM significantly decreased EMT and prevented pulmonary fibrosis through decreasing HMGB1 and regulating RAGE in vitro and in vivo. PRM inhibited TGF-β1-induced EMT via decreased HMGB1 and vimentin and increased RAGE and E-cadherin levels. In summary, PRM prevented experimental pulmonary fibrosis by modulating the HMGB1/RAGE pathway. |
id |
ABDC-1_914ac216cfef9934b133e728016705ca |
---|---|
oai_identifier_str |
oai:scielo:S0100-879X2015000600545 |
network_acronym_str |
ABDC-1 |
network_name_str |
Brazilian Journal of Medical and Biological Research |
repository_id_str |
|
spelling |
Protective roles of pulmonary rehabilitation mixture in experimental pulmonary fibrosis in vitro and in vivoHigh mobility group protein B1Epithelial-mesenchymal transitionPulmonary rehabilitation mixtureReceptor for advanced glycation end-productAbnormal high mobility group protein B1 (HMGB1) activation is involved in the pathogenesis of pulmonary fibrosis. Pulmonary rehabilitation mixture (PRM), which combines extracts from eight traditional Chinese medicines, has very good lung protection in clinical use. However, it is not known if PRM has anti-fibrotic activity. In this study, we investigated the effects of PRM on transforming growth factor-β1 (TGF-β1)-mediated and bleomycin (BLM)-induced pulmonary fibrosis in vitro and in vivo. The effects of PRM on TGF-β1-mediated epithelial-mesenchymal transition (EMT) in A549 cells, on the proliferation of human lung fibroblasts (HLF-1) in vitro, and on BLM-induced pulmonary fibrosis in vivo were investigated. PRM treatment resulted in a reduction of EMT in A549 cells that was associated with attenuating an increase of vimentin and a decrease of E-cadherin. PRM inhibited the proliferation of HLF-1 at an IC50 of 0.51 µg/mL. PRM ameliorated BLM-induced pulmonary fibrosis in rats, with reduction of histopathological scores and collagen deposition, and a decrease in α-smooth muscle actin (α-SMA) and HMGB1 expression. An increase in receptor for advanced glycation end-product (RAGE) expression was found in BLM-instilled lungs. PRM significantly decreased EMT and prevented pulmonary fibrosis through decreasing HMGB1 and regulating RAGE in vitro and in vivo. PRM inhibited TGF-β1-induced EMT via decreased HMGB1 and vimentin and increased RAGE and E-cadherin levels. In summary, PRM prevented experimental pulmonary fibrosis by modulating the HMGB1/RAGE pathway.Associação Brasileira de Divulgação Científica2015-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2015000600545Brazilian Journal of Medical and Biological Research v.48 n.6 2015reponame:Brazilian Journal of Medical and Biological Researchinstname:Associação Brasileira de Divulgação Científica (ABDC)instacron:ABDC10.1590/1414-431x20144301info:eu-repo/semantics/openAccessZhang,L.Ji,Y.X.Jiang,W.L.Lv,C.J.eng2019-03-19T00:00:00Zoai:scielo:S0100-879X2015000600545Revistahttps://www.bjournal.org/https://old.scielo.br/oai/scielo-oai.phpbjournal@terra.com.br||bjournal@terra.com.br1414-431X0100-879Xopendoar:2019-03-19T00:00Brazilian Journal of Medical and Biological Research - Associação Brasileira de Divulgação Científica (ABDC)false |
dc.title.none.fl_str_mv |
Protective roles of pulmonary rehabilitation mixture in experimental pulmonary fibrosis in vitro and in vivo |
title |
Protective roles of pulmonary rehabilitation mixture in experimental pulmonary fibrosis in vitro and in vivo |
spellingShingle |
Protective roles of pulmonary rehabilitation mixture in experimental pulmonary fibrosis in vitro and in vivo Zhang,L. High mobility group protein B1 Epithelial-mesenchymal transition Pulmonary rehabilitation mixture Receptor for advanced glycation end-product |
title_short |
Protective roles of pulmonary rehabilitation mixture in experimental pulmonary fibrosis in vitro and in vivo |
title_full |
Protective roles of pulmonary rehabilitation mixture in experimental pulmonary fibrosis in vitro and in vivo |
title_fullStr |
Protective roles of pulmonary rehabilitation mixture in experimental pulmonary fibrosis in vitro and in vivo |
title_full_unstemmed |
Protective roles of pulmonary rehabilitation mixture in experimental pulmonary fibrosis in vitro and in vivo |
title_sort |
Protective roles of pulmonary rehabilitation mixture in experimental pulmonary fibrosis in vitro and in vivo |
author |
Zhang,L. |
author_facet |
Zhang,L. Ji,Y.X. Jiang,W.L. Lv,C.J. |
author_role |
author |
author2 |
Ji,Y.X. Jiang,W.L. Lv,C.J. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Zhang,L. Ji,Y.X. Jiang,W.L. Lv,C.J. |
dc.subject.por.fl_str_mv |
High mobility group protein B1 Epithelial-mesenchymal transition Pulmonary rehabilitation mixture Receptor for advanced glycation end-product |
topic |
High mobility group protein B1 Epithelial-mesenchymal transition Pulmonary rehabilitation mixture Receptor for advanced glycation end-product |
description |
Abnormal high mobility group protein B1 (HMGB1) activation is involved in the pathogenesis of pulmonary fibrosis. Pulmonary rehabilitation mixture (PRM), which combines extracts from eight traditional Chinese medicines, has very good lung protection in clinical use. However, it is not known if PRM has anti-fibrotic activity. In this study, we investigated the effects of PRM on transforming growth factor-β1 (TGF-β1)-mediated and bleomycin (BLM)-induced pulmonary fibrosis in vitro and in vivo. The effects of PRM on TGF-β1-mediated epithelial-mesenchymal transition (EMT) in A549 cells, on the proliferation of human lung fibroblasts (HLF-1) in vitro, and on BLM-induced pulmonary fibrosis in vivo were investigated. PRM treatment resulted in a reduction of EMT in A549 cells that was associated with attenuating an increase of vimentin and a decrease of E-cadherin. PRM inhibited the proliferation of HLF-1 at an IC50 of 0.51 µg/mL. PRM ameliorated BLM-induced pulmonary fibrosis in rats, with reduction of histopathological scores and collagen deposition, and a decrease in α-smooth muscle actin (α-SMA) and HMGB1 expression. An increase in receptor for advanced glycation end-product (RAGE) expression was found in BLM-instilled lungs. PRM significantly decreased EMT and prevented pulmonary fibrosis through decreasing HMGB1 and regulating RAGE in vitro and in vivo. PRM inhibited TGF-β1-induced EMT via decreased HMGB1 and vimentin and increased RAGE and E-cadherin levels. In summary, PRM prevented experimental pulmonary fibrosis by modulating the HMGB1/RAGE pathway. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-06-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2015000600545 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2015000600545 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1414-431x20144301 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Divulgação Científica |
publisher.none.fl_str_mv |
Associação Brasileira de Divulgação Científica |
dc.source.none.fl_str_mv |
Brazilian Journal of Medical and Biological Research v.48 n.6 2015 reponame:Brazilian Journal of Medical and Biological Research instname:Associação Brasileira de Divulgação Científica (ABDC) instacron:ABDC |
instname_str |
Associação Brasileira de Divulgação Científica (ABDC) |
instacron_str |
ABDC |
institution |
ABDC |
reponame_str |
Brazilian Journal of Medical and Biological Research |
collection |
Brazilian Journal of Medical and Biological Research |
repository.name.fl_str_mv |
Brazilian Journal of Medical and Biological Research - Associação Brasileira de Divulgação Científica (ABDC) |
repository.mail.fl_str_mv |
bjournal@terra.com.br||bjournal@terra.com.br |
_version_ |
1754302944534069248 |