4'-O-β-D-glucosyl-5-O-methylvisamminol ameliorates imiquimod-induced psoriasis-like dermatitis and inhibits inflammatory cytokines production by suppressing the NF-κB and MAPK signaling pathways

Detalhes bibliográficos
Autor(a) principal: Fu,Jing
Data de Publicação: 2020
Outros Autores: Zeng,Zuping, Zhang,Lu, Wang,Yan, Li,Ping
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Medical and Biological Research
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2020001200611
Resumo: Psoriasis is a chronic inflammatory skin disorder in humans, and the inflammatory reaction plays an important role in development and onset of psoriasis. 4'-O-β-D-glucosyl-5-O-methylvisamminol (4GMV) is one of the major active chromones isolated from Saposhnikoviae divaricata (Turcz.) Schischk, which has been reported to exhibit excellent anti-inflammatory activities. However, the possible therapeutic effect on psoriasis and underlying mechanism has not been reported. Thus, the aim of this study was to investigate the protective effect of 4GMV on the imiquimod (IMQ)-induced psoriasis-like lesions in BALB/c mice and the anti-inflammatory effect on the lipopolysaccharide (LPS)-induced inflammation in RAW264.7 macrophages. The results demonstrated that 4GMV decreased IMQ-induced keratinocyte proliferation and inflammatory cell infiltration. Moreover, 4GMV treatment significantly inhibited the production of NO, PEG 2, and cytokines such as interleukin (IL)-1β, IL-6, interferon (IFN)-γ, and IL-22 in LPS-stimulated RAW264.7 macrophages. 4GMV also suppressed the LPS-upregulated protein expressions of iNOS and COX-2 in a dose-dependent manner. Furthermore, qRT-PCR analysis showed that 4GMV down-regulated the mRNA level of IL-1β and IL-6 expression. Further studies by western blot indicated that 4GMV inhibited the activation of upstream mediator NF-κB by suppressing the expression of TLR4 and the phosphorylation of IκBα and p65. The phosphorylation of JNK, p38, and ERK were also markedly reversed by 4GMV in LPS-treated RAW264.7 macrophages. Taken together, these results demonstrated that 4GMV showed a protective effect in IMQ-induced psoriasis-like mice and inhibited inflammation through the NF-κB and MAPK signaling pathways, indicating that 4GMV might be a potential therapeutic drug for psoriasis.
id ABDC-1_bda10f0e6219e3708d0f8b9019830905
oai_identifier_str oai:scielo:S0100-879X2020001200611
network_acronym_str ABDC-1
network_name_str Brazilian Journal of Medical and Biological Research
repository_id_str
spelling 4'-O-β-D-glucosyl-5-O-methylvisamminol ameliorates imiquimod-induced psoriasis-like dermatitis and inhibits inflammatory cytokines production by suppressing the NF-κB and MAPK signaling pathways4'-O-β-D-glucosyl-5-O-methylvisamminolLipopolysaccharideInflammatory cytokinesNF-κBMAPKPsoriasis is a chronic inflammatory skin disorder in humans, and the inflammatory reaction plays an important role in development and onset of psoriasis. 4'-O-β-D-glucosyl-5-O-methylvisamminol (4GMV) is one of the major active chromones isolated from Saposhnikoviae divaricata (Turcz.) Schischk, which has been reported to exhibit excellent anti-inflammatory activities. However, the possible therapeutic effect on psoriasis and underlying mechanism has not been reported. Thus, the aim of this study was to investigate the protective effect of 4GMV on the imiquimod (IMQ)-induced psoriasis-like lesions in BALB/c mice and the anti-inflammatory effect on the lipopolysaccharide (LPS)-induced inflammation in RAW264.7 macrophages. The results demonstrated that 4GMV decreased IMQ-induced keratinocyte proliferation and inflammatory cell infiltration. Moreover, 4GMV treatment significantly inhibited the production of NO, PEG 2, and cytokines such as interleukin (IL)-1β, IL-6, interferon (IFN)-γ, and IL-22 in LPS-stimulated RAW264.7 macrophages. 4GMV also suppressed the LPS-upregulated protein expressions of iNOS and COX-2 in a dose-dependent manner. Furthermore, qRT-PCR analysis showed that 4GMV down-regulated the mRNA level of IL-1β and IL-6 expression. Further studies by western blot indicated that 4GMV inhibited the activation of upstream mediator NF-κB by suppressing the expression of TLR4 and the phosphorylation of IκBα and p65. The phosphorylation of JNK, p38, and ERK were also markedly reversed by 4GMV in LPS-treated RAW264.7 macrophages. Taken together, these results demonstrated that 4GMV showed a protective effect in IMQ-induced psoriasis-like mice and inhibited inflammation through the NF-κB and MAPK signaling pathways, indicating that 4GMV might be a potential therapeutic drug for psoriasis.Associação Brasileira de Divulgação Científica2020-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2020001200611Brazilian Journal of Medical and Biological Research v.53 n.12 2020reponame:Brazilian Journal of Medical and Biological Researchinstname:Associação Brasileira de Divulgação Científica (ABDC)instacron:ABDC10.1590/1414-431x202010109info:eu-repo/semantics/openAccessFu,JingZeng,ZupingZhang,LuWang,YanLi,Pingeng2020-10-27T00:00:00Zoai:scielo:S0100-879X2020001200611Revistahttps://www.bjournal.org/https://old.scielo.br/oai/scielo-oai.phpbjournal@terra.com.br||bjournal@terra.com.br1414-431X0100-879Xopendoar:2020-10-27T00:00Brazilian Journal of Medical and Biological Research - Associação Brasileira de Divulgação Científica (ABDC)false
dc.title.none.fl_str_mv 4'-O-β-D-glucosyl-5-O-methylvisamminol ameliorates imiquimod-induced psoriasis-like dermatitis and inhibits inflammatory cytokines production by suppressing the NF-κB and MAPK signaling pathways
title 4'-O-β-D-glucosyl-5-O-methylvisamminol ameliorates imiquimod-induced psoriasis-like dermatitis and inhibits inflammatory cytokines production by suppressing the NF-κB and MAPK signaling pathways
spellingShingle 4'-O-β-D-glucosyl-5-O-methylvisamminol ameliorates imiquimod-induced psoriasis-like dermatitis and inhibits inflammatory cytokines production by suppressing the NF-κB and MAPK signaling pathways
Fu,Jing
4'-O-β-D-glucosyl-5-O-methylvisamminol
Lipopolysaccharide
Inflammatory cytokines
NF-κB
MAPK
title_short 4'-O-β-D-glucosyl-5-O-methylvisamminol ameliorates imiquimod-induced psoriasis-like dermatitis and inhibits inflammatory cytokines production by suppressing the NF-κB and MAPK signaling pathways
title_full 4'-O-β-D-glucosyl-5-O-methylvisamminol ameliorates imiquimod-induced psoriasis-like dermatitis and inhibits inflammatory cytokines production by suppressing the NF-κB and MAPK signaling pathways
title_fullStr 4'-O-β-D-glucosyl-5-O-methylvisamminol ameliorates imiquimod-induced psoriasis-like dermatitis and inhibits inflammatory cytokines production by suppressing the NF-κB and MAPK signaling pathways
title_full_unstemmed 4'-O-β-D-glucosyl-5-O-methylvisamminol ameliorates imiquimod-induced psoriasis-like dermatitis and inhibits inflammatory cytokines production by suppressing the NF-κB and MAPK signaling pathways
title_sort 4'-O-β-D-glucosyl-5-O-methylvisamminol ameliorates imiquimod-induced psoriasis-like dermatitis and inhibits inflammatory cytokines production by suppressing the NF-κB and MAPK signaling pathways
author Fu,Jing
author_facet Fu,Jing
Zeng,Zuping
Zhang,Lu
Wang,Yan
Li,Ping
author_role author
author2 Zeng,Zuping
Zhang,Lu
Wang,Yan
Li,Ping
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Fu,Jing
Zeng,Zuping
Zhang,Lu
Wang,Yan
Li,Ping
dc.subject.por.fl_str_mv 4'-O-β-D-glucosyl-5-O-methylvisamminol
Lipopolysaccharide
Inflammatory cytokines
NF-κB
MAPK
topic 4'-O-β-D-glucosyl-5-O-methylvisamminol
Lipopolysaccharide
Inflammatory cytokines
NF-κB
MAPK
description Psoriasis is a chronic inflammatory skin disorder in humans, and the inflammatory reaction plays an important role in development and onset of psoriasis. 4'-O-β-D-glucosyl-5-O-methylvisamminol (4GMV) is one of the major active chromones isolated from Saposhnikoviae divaricata (Turcz.) Schischk, which has been reported to exhibit excellent anti-inflammatory activities. However, the possible therapeutic effect on psoriasis and underlying mechanism has not been reported. Thus, the aim of this study was to investigate the protective effect of 4GMV on the imiquimod (IMQ)-induced psoriasis-like lesions in BALB/c mice and the anti-inflammatory effect on the lipopolysaccharide (LPS)-induced inflammation in RAW264.7 macrophages. The results demonstrated that 4GMV decreased IMQ-induced keratinocyte proliferation and inflammatory cell infiltration. Moreover, 4GMV treatment significantly inhibited the production of NO, PEG 2, and cytokines such as interleukin (IL)-1β, IL-6, interferon (IFN)-γ, and IL-22 in LPS-stimulated RAW264.7 macrophages. 4GMV also suppressed the LPS-upregulated protein expressions of iNOS and COX-2 in a dose-dependent manner. Furthermore, qRT-PCR analysis showed that 4GMV down-regulated the mRNA level of IL-1β and IL-6 expression. Further studies by western blot indicated that 4GMV inhibited the activation of upstream mediator NF-κB by suppressing the expression of TLR4 and the phosphorylation of IκBα and p65. The phosphorylation of JNK, p38, and ERK were also markedly reversed by 4GMV in LPS-treated RAW264.7 macrophages. Taken together, these results demonstrated that 4GMV showed a protective effect in IMQ-induced psoriasis-like mice and inhibited inflammation through the NF-κB and MAPK signaling pathways, indicating that 4GMV might be a potential therapeutic drug for psoriasis.
publishDate 2020
dc.date.none.fl_str_mv 2020-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2020001200611
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2020001200611
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1414-431x202010109
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Divulgação Científica
publisher.none.fl_str_mv Associação Brasileira de Divulgação Científica
dc.source.none.fl_str_mv Brazilian Journal of Medical and Biological Research v.53 n.12 2020
reponame:Brazilian Journal of Medical and Biological Research
instname:Associação Brasileira de Divulgação Científica (ABDC)
instacron:ABDC
instname_str Associação Brasileira de Divulgação Científica (ABDC)
instacron_str ABDC
institution ABDC
reponame_str Brazilian Journal of Medical and Biological Research
collection Brazilian Journal of Medical and Biological Research
repository.name.fl_str_mv Brazilian Journal of Medical and Biological Research - Associação Brasileira de Divulgação Científica (ABDC)
repository.mail.fl_str_mv bjournal@terra.com.br||bjournal@terra.com.br
_version_ 1754302948028973056