[RETRACTED ARTICLE] Long non-coding RNA-ROR aggravates myocardial ischemia/reperfusion injury

Detalhes bibliográficos
Autor(a) principal: Zhang,Weiwei
Data de Publicação: 2018
Outros Autores: Li,Ying, Wang,Peng
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Medical and Biological Research
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2018000600609
Resumo: Long non-coding RNAs (lncRNAs) play an important role in the pathogenesis of cardiovascular diseases, especially in myocardial infarction and ischemia/reperfusion (I/R). However, the underlying molecular mechanism remains unclear. In this study, we determined the role and the possible underlying molecular mechanism of lncRNA-ROR in myocardial I/R injury. H9c2 cells and human cardiomyocytes (HCM) were subjected to either hypoxia/reoxygenation (H/R), I/R or normal conditions (normoxia). The expression levels of lncRNA-ROR were detected in serum of myocardial I/R injury patients, H9c2 cells, and HCM by qRT-PCR. Then, levels of lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-PX) were measured by kits. Cell viability, apoptosis, apoptosis-associated factors, and p38/MAPK pathway were examined by MTT, flow cytometry, and western blot assays. Furthermore, reactive oxygen species (ROS) production was determined by H2DCF-DA and MitoSOX Red probes with flow cytometry. NADPH oxidase activity and NOX2 protein levels were measured by lucigenin chemiluminescence and western blot. Results showed that lncRNA-ROR expression was increased in I/R patients and in H/R treatment of H9c2 cells and HCM. Moreover, lncRNA-ROR significantly promoted H/R-induced myocardial injury via stimulating release of LDH, MDA, SOD, and GSH-PX. Furthermore, lncRNA-ROR decreased cell viability, increased apoptosis, and regulated expression of apoptosis-associated factors. Additionally, lncRNA-ROR increased phosphorylation of p38 and ERK1/2 expression and inhibition of p38/MAPK, and rescued lncRNA-ROR-induced cell injury in H9c2 cells and HCM. ROS production, NADPH oxidase activity, and NOX2 protein levels were promoted by lncRNA-ROR. These data suggested that lncRNA-ROR acted as a therapeutic agent for the treatment of myocardial I/R injury.
id ABDC-1_d723aedea6000fc6f708670a93e7aee0
oai_identifier_str oai:scielo:S0100-879X2018000600609
network_acronym_str ABDC-1
network_name_str Brazilian Journal of Medical and Biological Research
repository_id_str
spelling [RETRACTED ARTICLE] Long non-coding RNA-ROR aggravates myocardial ischemia/reperfusion injurylncRNAIschemia/reperfusion (I/R)Hypoxia/reoxygenation (H/R)Cell viabilityApoptosisLong non-coding RNAs (lncRNAs) play an important role in the pathogenesis of cardiovascular diseases, especially in myocardial infarction and ischemia/reperfusion (I/R). However, the underlying molecular mechanism remains unclear. In this study, we determined the role and the possible underlying molecular mechanism of lncRNA-ROR in myocardial I/R injury. H9c2 cells and human cardiomyocytes (HCM) were subjected to either hypoxia/reoxygenation (H/R), I/R or normal conditions (normoxia). The expression levels of lncRNA-ROR were detected in serum of myocardial I/R injury patients, H9c2 cells, and HCM by qRT-PCR. Then, levels of lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-PX) were measured by kits. Cell viability, apoptosis, apoptosis-associated factors, and p38/MAPK pathway were examined by MTT, flow cytometry, and western blot assays. Furthermore, reactive oxygen species (ROS) production was determined by H2DCF-DA and MitoSOX Red probes with flow cytometry. NADPH oxidase activity and NOX2 protein levels were measured by lucigenin chemiluminescence and western blot. Results showed that lncRNA-ROR expression was increased in I/R patients and in H/R treatment of H9c2 cells and HCM. Moreover, lncRNA-ROR significantly promoted H/R-induced myocardial injury via stimulating release of LDH, MDA, SOD, and GSH-PX. Furthermore, lncRNA-ROR decreased cell viability, increased apoptosis, and regulated expression of apoptosis-associated factors. Additionally, lncRNA-ROR increased phosphorylation of p38 and ERK1/2 expression and inhibition of p38/MAPK, and rescued lncRNA-ROR-induced cell injury in H9c2 cells and HCM. ROS production, NADPH oxidase activity, and NOX2 protein levels were promoted by lncRNA-ROR. These data suggested that lncRNA-ROR acted as a therapeutic agent for the treatment of myocardial I/R injury.Associação Brasileira de Divulgação Científica2018-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2018000600609Brazilian Journal of Medical and Biological Research v.51 n.6 2018reponame:Brazilian Journal of Medical and Biological Researchinstname:Associação Brasileira de Divulgação Científica (ABDC)instacron:ABDC10.1590/1414-431x20186555info:eu-repo/semantics/openAccessZhang,WeiweiLi,YingWang,Pengeng2021-06-11T00:00:00Zoai:scielo:S0100-879X2018000600609Revistahttps://www.bjournal.org/https://old.scielo.br/oai/scielo-oai.phpbjournal@terra.com.br||bjournal@terra.com.br1414-431X0100-879Xopendoar:2021-06-11T00:00Brazilian Journal of Medical and Biological Research - Associação Brasileira de Divulgação Científica (ABDC)false
dc.title.none.fl_str_mv [RETRACTED ARTICLE] Long non-coding RNA-ROR aggravates myocardial ischemia/reperfusion injury
title [RETRACTED ARTICLE] Long non-coding RNA-ROR aggravates myocardial ischemia/reperfusion injury
spellingShingle [RETRACTED ARTICLE] Long non-coding RNA-ROR aggravates myocardial ischemia/reperfusion injury
Zhang,Weiwei
lncRNA
Ischemia/reperfusion (I/R)
Hypoxia/reoxygenation (H/R)
Cell viability
Apoptosis
title_short [RETRACTED ARTICLE] Long non-coding RNA-ROR aggravates myocardial ischemia/reperfusion injury
title_full [RETRACTED ARTICLE] Long non-coding RNA-ROR aggravates myocardial ischemia/reperfusion injury
title_fullStr [RETRACTED ARTICLE] Long non-coding RNA-ROR aggravates myocardial ischemia/reperfusion injury
title_full_unstemmed [RETRACTED ARTICLE] Long non-coding RNA-ROR aggravates myocardial ischemia/reperfusion injury
title_sort [RETRACTED ARTICLE] Long non-coding RNA-ROR aggravates myocardial ischemia/reperfusion injury
author Zhang,Weiwei
author_facet Zhang,Weiwei
Li,Ying
Wang,Peng
author_role author
author2 Li,Ying
Wang,Peng
author2_role author
author
dc.contributor.author.fl_str_mv Zhang,Weiwei
Li,Ying
Wang,Peng
dc.subject.por.fl_str_mv lncRNA
Ischemia/reperfusion (I/R)
Hypoxia/reoxygenation (H/R)
Cell viability
Apoptosis
topic lncRNA
Ischemia/reperfusion (I/R)
Hypoxia/reoxygenation (H/R)
Cell viability
Apoptosis
description Long non-coding RNAs (lncRNAs) play an important role in the pathogenesis of cardiovascular diseases, especially in myocardial infarction and ischemia/reperfusion (I/R). However, the underlying molecular mechanism remains unclear. In this study, we determined the role and the possible underlying molecular mechanism of lncRNA-ROR in myocardial I/R injury. H9c2 cells and human cardiomyocytes (HCM) were subjected to either hypoxia/reoxygenation (H/R), I/R or normal conditions (normoxia). The expression levels of lncRNA-ROR were detected in serum of myocardial I/R injury patients, H9c2 cells, and HCM by qRT-PCR. Then, levels of lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-PX) were measured by kits. Cell viability, apoptosis, apoptosis-associated factors, and p38/MAPK pathway were examined by MTT, flow cytometry, and western blot assays. Furthermore, reactive oxygen species (ROS) production was determined by H2DCF-DA and MitoSOX Red probes with flow cytometry. NADPH oxidase activity and NOX2 protein levels were measured by lucigenin chemiluminescence and western blot. Results showed that lncRNA-ROR expression was increased in I/R patients and in H/R treatment of H9c2 cells and HCM. Moreover, lncRNA-ROR significantly promoted H/R-induced myocardial injury via stimulating release of LDH, MDA, SOD, and GSH-PX. Furthermore, lncRNA-ROR decreased cell viability, increased apoptosis, and regulated expression of apoptosis-associated factors. Additionally, lncRNA-ROR increased phosphorylation of p38 and ERK1/2 expression and inhibition of p38/MAPK, and rescued lncRNA-ROR-induced cell injury in H9c2 cells and HCM. ROS production, NADPH oxidase activity, and NOX2 protein levels were promoted by lncRNA-ROR. These data suggested that lncRNA-ROR acted as a therapeutic agent for the treatment of myocardial I/R injury.
publishDate 2018
dc.date.none.fl_str_mv 2018-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2018000600609
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2018000600609
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1414-431x20186555
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Divulgação Científica
publisher.none.fl_str_mv Associação Brasileira de Divulgação Científica
dc.source.none.fl_str_mv Brazilian Journal of Medical and Biological Research v.51 n.6 2018
reponame:Brazilian Journal of Medical and Biological Research
instname:Associação Brasileira de Divulgação Científica (ABDC)
instacron:ABDC
instname_str Associação Brasileira de Divulgação Científica (ABDC)
instacron_str ABDC
institution ABDC
reponame_str Brazilian Journal of Medical and Biological Research
collection Brazilian Journal of Medical and Biological Research
repository.name.fl_str_mv Brazilian Journal of Medical and Biological Research - Associação Brasileira de Divulgação Científica (ABDC)
repository.mail.fl_str_mv bjournal@terra.com.br||bjournal@terra.com.br
_version_ 1754302946346008576