Etanercept protects rat cardiomyocytes against hypertrophy by regulating inflammatory cytokines secretion and cell apoptosis

Detalhes bibliográficos
Autor(a) principal: Li,Q.
Data de Publicação: 2017
Outros Autores: Yu,Q., Na,R., Liu,B.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Medical and Biological Research
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2017000600604
Resumo: We aimed to investigate the effect of etanercept, a tumor necrosis factor-α (TNF-α) inhibitor, on rat cardiomyocyte hypertrophy and its underlying mechanism. Primary neonatal rat cardiomyocytes were isolated from Sprague-Dawley rats. The model of rat cardiomyocyte hypertrophy was induced by endothelin, and then treated with different concentrations of etanercept (1, 10, and 50 μM). After treatment, cell counts, viability and cell apoptosis were evaluated. The mRNA levels of myocardial hypertrophy marker genes, including atrial natriuretic factor (ANF), matrix metalloproteinase (MMP)-9 and MMP-13, were detected by qRT-PCR, and the expressions of apoptosis-related proteins (Bcl-2 and Bax) were measured by western blotting. The protein levels of transforming growth factor-β1 (TGF-β1), interleukin (IL)-1β, IL-6, leukemia inhibitory factor (LIF) and cardiotrophin-1 (CT-1) were determined using enzyme linked immunosorbent assay (ELISA) kits. In the present study, TNF-α level in cardiomyocytes with hypertrophy was significantly enhanced (P<0.05). Compared to the model group, cell number and viability were significantly increased and ratio of apoptotic cells was reduced by etanercept (P<0.05, P<0.01, or P<0.001). In addition, etanercept remarkably reduced the mRNA levels of ANF, MMP-9 and MMP-13, inhibited the expression of Bax, and increased the expression of Bcl-2 compared to the model group (P<0.05). ELISA results further showed that etanercept lowered the levels of IL-1β, IL-6, LIF and CT-1 but not TGF-β1 compared to the model group (P<0.05). Etanercept may protect rat cardiomyocytes from hypertrophy by inhibiting inflammatory cytokines secretion and cell apoptosis.
id ABDC-1_e0e00d8bd1729ca815ae4d2dce7dc1c3
oai_identifier_str oai:scielo:S0100-879X2017000600604
network_acronym_str ABDC-1
network_name_str Brazilian Journal of Medical and Biological Research
repository_id_str
spelling Etanercept protects rat cardiomyocytes against hypertrophy by regulating inflammatory cytokines secretion and cell apoptosisTumor necrosis factor-α inhibitorEndothelinMyocardial hypertrophyCell apoptosisInflammatory responseWe aimed to investigate the effect of etanercept, a tumor necrosis factor-α (TNF-α) inhibitor, on rat cardiomyocyte hypertrophy and its underlying mechanism. Primary neonatal rat cardiomyocytes were isolated from Sprague-Dawley rats. The model of rat cardiomyocyte hypertrophy was induced by endothelin, and then treated with different concentrations of etanercept (1, 10, and 50 μM). After treatment, cell counts, viability and cell apoptosis were evaluated. The mRNA levels of myocardial hypertrophy marker genes, including atrial natriuretic factor (ANF), matrix metalloproteinase (MMP)-9 and MMP-13, were detected by qRT-PCR, and the expressions of apoptosis-related proteins (Bcl-2 and Bax) were measured by western blotting. The protein levels of transforming growth factor-β1 (TGF-β1), interleukin (IL)-1β, IL-6, leukemia inhibitory factor (LIF) and cardiotrophin-1 (CT-1) were determined using enzyme linked immunosorbent assay (ELISA) kits. In the present study, TNF-α level in cardiomyocytes with hypertrophy was significantly enhanced (P<0.05). Compared to the model group, cell number and viability were significantly increased and ratio of apoptotic cells was reduced by etanercept (P<0.05, P<0.01, or P<0.001). In addition, etanercept remarkably reduced the mRNA levels of ANF, MMP-9 and MMP-13, inhibited the expression of Bax, and increased the expression of Bcl-2 compared to the model group (P<0.05). ELISA results further showed that etanercept lowered the levels of IL-1β, IL-6, LIF and CT-1 but not TGF-β1 compared to the model group (P<0.05). Etanercept may protect rat cardiomyocytes from hypertrophy by inhibiting inflammatory cytokines secretion and cell apoptosis.Associação Brasileira de Divulgação Científica2017-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2017000600604Brazilian Journal of Medical and Biological Research v.50 n.6 2017reponame:Brazilian Journal of Medical and Biological Researchinstname:Associação Brasileira de Divulgação Científica (ABDC)instacron:ABDC10.1590/1414-431x20175868info:eu-repo/semantics/openAccessLi,Q.Yu,Q.Na,R.Liu,B.eng2019-03-19T00:00:00Zoai:scielo:S0100-879X2017000600604Revistahttps://www.bjournal.org/https://old.scielo.br/oai/scielo-oai.phpbjournal@terra.com.br||bjournal@terra.com.br1414-431X0100-879Xopendoar:2019-03-19T00:00Brazilian Journal of Medical and Biological Research - Associação Brasileira de Divulgação Científica (ABDC)false
dc.title.none.fl_str_mv Etanercept protects rat cardiomyocytes against hypertrophy by regulating inflammatory cytokines secretion and cell apoptosis
title Etanercept protects rat cardiomyocytes against hypertrophy by regulating inflammatory cytokines secretion and cell apoptosis
spellingShingle Etanercept protects rat cardiomyocytes against hypertrophy by regulating inflammatory cytokines secretion and cell apoptosis
Li,Q.
Tumor necrosis factor-α inhibitor
Endothelin
Myocardial hypertrophy
Cell apoptosis
Inflammatory response
title_short Etanercept protects rat cardiomyocytes against hypertrophy by regulating inflammatory cytokines secretion and cell apoptosis
title_full Etanercept protects rat cardiomyocytes against hypertrophy by regulating inflammatory cytokines secretion and cell apoptosis
title_fullStr Etanercept protects rat cardiomyocytes against hypertrophy by regulating inflammatory cytokines secretion and cell apoptosis
title_full_unstemmed Etanercept protects rat cardiomyocytes against hypertrophy by regulating inflammatory cytokines secretion and cell apoptosis
title_sort Etanercept protects rat cardiomyocytes against hypertrophy by regulating inflammatory cytokines secretion and cell apoptosis
author Li,Q.
author_facet Li,Q.
Yu,Q.
Na,R.
Liu,B.
author_role author
author2 Yu,Q.
Na,R.
Liu,B.
author2_role author
author
author
dc.contributor.author.fl_str_mv Li,Q.
Yu,Q.
Na,R.
Liu,B.
dc.subject.por.fl_str_mv Tumor necrosis factor-α inhibitor
Endothelin
Myocardial hypertrophy
Cell apoptosis
Inflammatory response
topic Tumor necrosis factor-α inhibitor
Endothelin
Myocardial hypertrophy
Cell apoptosis
Inflammatory response
description We aimed to investigate the effect of etanercept, a tumor necrosis factor-α (TNF-α) inhibitor, on rat cardiomyocyte hypertrophy and its underlying mechanism. Primary neonatal rat cardiomyocytes were isolated from Sprague-Dawley rats. The model of rat cardiomyocyte hypertrophy was induced by endothelin, and then treated with different concentrations of etanercept (1, 10, and 50 μM). After treatment, cell counts, viability and cell apoptosis were evaluated. The mRNA levels of myocardial hypertrophy marker genes, including atrial natriuretic factor (ANF), matrix metalloproteinase (MMP)-9 and MMP-13, were detected by qRT-PCR, and the expressions of apoptosis-related proteins (Bcl-2 and Bax) were measured by western blotting. The protein levels of transforming growth factor-β1 (TGF-β1), interleukin (IL)-1β, IL-6, leukemia inhibitory factor (LIF) and cardiotrophin-1 (CT-1) were determined using enzyme linked immunosorbent assay (ELISA) kits. In the present study, TNF-α level in cardiomyocytes with hypertrophy was significantly enhanced (P<0.05). Compared to the model group, cell number and viability were significantly increased and ratio of apoptotic cells was reduced by etanercept (P<0.05, P<0.01, or P<0.001). In addition, etanercept remarkably reduced the mRNA levels of ANF, MMP-9 and MMP-13, inhibited the expression of Bax, and increased the expression of Bcl-2 compared to the model group (P<0.05). ELISA results further showed that etanercept lowered the levels of IL-1β, IL-6, LIF and CT-1 but not TGF-β1 compared to the model group (P<0.05). Etanercept may protect rat cardiomyocytes from hypertrophy by inhibiting inflammatory cytokines secretion and cell apoptosis.
publishDate 2017
dc.date.none.fl_str_mv 2017-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2017000600604
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2017000600604
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1414-431x20175868
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Divulgação Científica
publisher.none.fl_str_mv Associação Brasileira de Divulgação Científica
dc.source.none.fl_str_mv Brazilian Journal of Medical and Biological Research v.50 n.6 2017
reponame:Brazilian Journal of Medical and Biological Research
instname:Associação Brasileira de Divulgação Científica (ABDC)
instacron:ABDC
instname_str Associação Brasileira de Divulgação Científica (ABDC)
instacron_str ABDC
institution ABDC
reponame_str Brazilian Journal of Medical and Biological Research
collection Brazilian Journal of Medical and Biological Research
repository.name.fl_str_mv Brazilian Journal of Medical and Biological Research - Associação Brasileira de Divulgação Científica (ABDC)
repository.mail.fl_str_mv bjournal@terra.com.br||bjournal@terra.com.br
_version_ 1754302945537556480