Atropine and ODQ antagonize tetanic fade induced by L-arginine in cats
Autor(a) principal: | |
---|---|
Data de Publicação: | 1999 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Medical and Biological Research |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X1999001000015 |
Resumo: | Although it has been demonstrated that nitric oxide (NO) released from sodium nitrite induces tetanic fade in the cat neuromuscular preparations, the effect of L-arginine on tetanic fade and its origin induced by NO have not been studied in these preparations. Furthermore, atropine reduces tetanic fade induced by several cholinergic and anticholinergic drugs in these preparations, whose mechanism is suggested to be mediated by the interaction of acetylcholine with inhibitory presynaptic muscarinic receptors. The present study was conducted in cats to determine the effects of L-arginine alone or after pretreatment with atropine or 1H-[1,2,4]oxadiazole [4,3-a]quinoxalin-1-one (ODQ) on neuromuscular preparations indirectly stimulated at high frequency. Drugs were injected into the middle genicular artery. L-arginine (2 mg/kg) and S-nitroso-N-acetylpenicillamine (SNAP; 16 µg/kg) induced tetanic fade. The N<FONT FACE="Symbol">w</font>-nitro-L-arginine (L-NOARG; 2 mg/kg) alone did not produce any effect, but reduced the tetanic fade induced by L-arginine. D-arginine (2 mg/kg) did not induce changes in tetanic fade. The tetanic fade induced by L-arginine or SNAP was reduced by previous injection of atropine (1.0 µg/kg) or ODQ (15 µg/kg). ODQ alone did not change tetanic fade. The data suggest that the NO-synthase-GC pathway participates in the L-arginine-induced tetanic fade in cat neuromuscular preparations. The tetanic fade induced by L-arginine probably depends on the action of NO at the presynaptic level. NO may stimulate guanylate cyclase increasing acetylcholine release and thereby stimulating presynaptic muscarinic receptors. |
id |
ABDC-1_f1089dc963428412a1398bad1dc81a41 |
---|---|
oai_identifier_str |
oai:scielo:S0100-879X1999001000015 |
network_acronym_str |
ABDC-1 |
network_name_str |
Brazilian Journal of Medical and Biological Research |
repository_id_str |
|
spelling |
Atropine and ODQ antagonize tetanic fade induced by L-arginine in catsatropinetetanic fadeskeletal musclenitric oxidemuscarinic receptorsAlthough it has been demonstrated that nitric oxide (NO) released from sodium nitrite induces tetanic fade in the cat neuromuscular preparations, the effect of L-arginine on tetanic fade and its origin induced by NO have not been studied in these preparations. Furthermore, atropine reduces tetanic fade induced by several cholinergic and anticholinergic drugs in these preparations, whose mechanism is suggested to be mediated by the interaction of acetylcholine with inhibitory presynaptic muscarinic receptors. The present study was conducted in cats to determine the effects of L-arginine alone or after pretreatment with atropine or 1H-[1,2,4]oxadiazole [4,3-a]quinoxalin-1-one (ODQ) on neuromuscular preparations indirectly stimulated at high frequency. Drugs were injected into the middle genicular artery. L-arginine (2 mg/kg) and S-nitroso-N-acetylpenicillamine (SNAP; 16 µg/kg) induced tetanic fade. The N<FONT FACE="Symbol">w</font>-nitro-L-arginine (L-NOARG; 2 mg/kg) alone did not produce any effect, but reduced the tetanic fade induced by L-arginine. D-arginine (2 mg/kg) did not induce changes in tetanic fade. The tetanic fade induced by L-arginine or SNAP was reduced by previous injection of atropine (1.0 µg/kg) or ODQ (15 µg/kg). ODQ alone did not change tetanic fade. The data suggest that the NO-synthase-GC pathway participates in the L-arginine-induced tetanic fade in cat neuromuscular preparations. The tetanic fade induced by L-arginine probably depends on the action of NO at the presynaptic level. NO may stimulate guanylate cyclase increasing acetylcholine release and thereby stimulating presynaptic muscarinic receptors.Associação Brasileira de Divulgação Científica1999-10-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X1999001000015Brazilian Journal of Medical and Biological Research v.32 n.10 1999reponame:Brazilian Journal of Medical and Biological Researchinstname:Associação Brasileira de Divulgação Científica (ABDC)instacron:ABDC10.1590/S0100-879X1999001000015info:eu-repo/semantics/openAccessCruciol-Souza,J.M.Alves-Do-Prado,W.eng1999-10-04T00:00:00Zoai:scielo:S0100-879X1999001000015Revistahttps://www.bjournal.org/https://old.scielo.br/oai/scielo-oai.phpbjournal@terra.com.br||bjournal@terra.com.br1414-431X0100-879Xopendoar:1999-10-04T00:00Brazilian Journal of Medical and Biological Research - Associação Brasileira de Divulgação Científica (ABDC)false |
dc.title.none.fl_str_mv |
Atropine and ODQ antagonize tetanic fade induced by L-arginine in cats |
title |
Atropine and ODQ antagonize tetanic fade induced by L-arginine in cats |
spellingShingle |
Atropine and ODQ antagonize tetanic fade induced by L-arginine in cats Cruciol-Souza,J.M. atropine tetanic fade skeletal muscle nitric oxide muscarinic receptors |
title_short |
Atropine and ODQ antagonize tetanic fade induced by L-arginine in cats |
title_full |
Atropine and ODQ antagonize tetanic fade induced by L-arginine in cats |
title_fullStr |
Atropine and ODQ antagonize tetanic fade induced by L-arginine in cats |
title_full_unstemmed |
Atropine and ODQ antagonize tetanic fade induced by L-arginine in cats |
title_sort |
Atropine and ODQ antagonize tetanic fade induced by L-arginine in cats |
author |
Cruciol-Souza,J.M. |
author_facet |
Cruciol-Souza,J.M. Alves-Do-Prado,W. |
author_role |
author |
author2 |
Alves-Do-Prado,W. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Cruciol-Souza,J.M. Alves-Do-Prado,W. |
dc.subject.por.fl_str_mv |
atropine tetanic fade skeletal muscle nitric oxide muscarinic receptors |
topic |
atropine tetanic fade skeletal muscle nitric oxide muscarinic receptors |
description |
Although it has been demonstrated that nitric oxide (NO) released from sodium nitrite induces tetanic fade in the cat neuromuscular preparations, the effect of L-arginine on tetanic fade and its origin induced by NO have not been studied in these preparations. Furthermore, atropine reduces tetanic fade induced by several cholinergic and anticholinergic drugs in these preparations, whose mechanism is suggested to be mediated by the interaction of acetylcholine with inhibitory presynaptic muscarinic receptors. The present study was conducted in cats to determine the effects of L-arginine alone or after pretreatment with atropine or 1H-[1,2,4]oxadiazole [4,3-a]quinoxalin-1-one (ODQ) on neuromuscular preparations indirectly stimulated at high frequency. Drugs were injected into the middle genicular artery. L-arginine (2 mg/kg) and S-nitroso-N-acetylpenicillamine (SNAP; 16 µg/kg) induced tetanic fade. The N<FONT FACE="Symbol">w</font>-nitro-L-arginine (L-NOARG; 2 mg/kg) alone did not produce any effect, but reduced the tetanic fade induced by L-arginine. D-arginine (2 mg/kg) did not induce changes in tetanic fade. The tetanic fade induced by L-arginine or SNAP was reduced by previous injection of atropine (1.0 µg/kg) or ODQ (15 µg/kg). ODQ alone did not change tetanic fade. The data suggest that the NO-synthase-GC pathway participates in the L-arginine-induced tetanic fade in cat neuromuscular preparations. The tetanic fade induced by L-arginine probably depends on the action of NO at the presynaptic level. NO may stimulate guanylate cyclase increasing acetylcholine release and thereby stimulating presynaptic muscarinic receptors. |
publishDate |
1999 |
dc.date.none.fl_str_mv |
1999-10-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X1999001000015 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X1999001000015 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0100-879X1999001000015 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Divulgação Científica |
publisher.none.fl_str_mv |
Associação Brasileira de Divulgação Científica |
dc.source.none.fl_str_mv |
Brazilian Journal of Medical and Biological Research v.32 n.10 1999 reponame:Brazilian Journal of Medical and Biological Research instname:Associação Brasileira de Divulgação Científica (ABDC) instacron:ABDC |
instname_str |
Associação Brasileira de Divulgação Científica (ABDC) |
instacron_str |
ABDC |
institution |
ABDC |
reponame_str |
Brazilian Journal of Medical and Biological Research |
collection |
Brazilian Journal of Medical and Biological Research |
repository.name.fl_str_mv |
Brazilian Journal of Medical and Biological Research - Associação Brasileira de Divulgação Científica (ABDC) |
repository.mail.fl_str_mv |
bjournal@terra.com.br||bjournal@terra.com.br |
_version_ |
1754302930081546240 |