Effects of bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) release from polylactide-poly (ethylene glycol)-polylactide (PELA) microcapsule-based scaffolds on bone

Detalhes bibliográficos
Autor(a) principal: Ren,Q.
Data de Publicação: 2018
Outros Autores: Cai,M., Zhang,K., Ren,W., Su,Z., Yang,T., Sun,T., Wang,J.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Medical and Biological Research
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2018000200603
Resumo: Multiple growth factors can be administered to mimic the natural process of bone healing in bone tissue engineering. We investigated the effects of sequential release of bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) from polylactide-poly (ethylene glycol)-polylactide (PELA) microcapsule-based scaffolds on bone regeneration. To improve the double emulsion/solvent evaporation technique, VEGF was encapsulated in PELA microcapsules, to which BMP-2 was attached. The scaffold (BMP-2/PELA/VEGF) was then fused to these microcapsules using the dichloromethane vapor method. The bioactivity of the released BMP-2 and VEGF was then quantified in rat mesenchymal stem cells (rMSCs). Immunoblotting analysis showed that BMP-2/PELA/VEG promoted the differentiation of rMSCs into osteoblasts via the MAPK and Wnt pathways. Osteoblast differentiation was assessed through alkaline phosphatase expression. When compared with simple BMP-2 plus VEGF group and pure PELA group, osteoblast differentiation in BMP-2/PELA/VEGF group significantly increased. An MTT assay indicated that BMP-2-loaded PELA scaffolds had no adverse effects on cell activity. BMP-2/PELA/VEG promoted the differentiation of rMSCs into osteoblast via the ERK1/2 and Wnt pathways. Our findings indicate that the sequential release of BMP-2 and VEGF from PELA microcapsule-based scaffolds is a promising approach for the treatment of bone defects.
id ABDC-1_f98593b184ddea8ecb0607c33c8dc441
oai_identifier_str oai:scielo:S0100-879X2018000200603
network_acronym_str ABDC-1
network_name_str Brazilian Journal of Medical and Biological Research
repository_id_str
spelling Effects of bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) release from polylactide-poly (ethylene glycol)-polylactide (PELA) microcapsule-based scaffolds on boneBone tissue engineeringBMP-2VEGFPELAScaffoldMultiple growth factors can be administered to mimic the natural process of bone healing in bone tissue engineering. We investigated the effects of sequential release of bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) from polylactide-poly (ethylene glycol)-polylactide (PELA) microcapsule-based scaffolds on bone regeneration. To improve the double emulsion/solvent evaporation technique, VEGF was encapsulated in PELA microcapsules, to which BMP-2 was attached. The scaffold (BMP-2/PELA/VEGF) was then fused to these microcapsules using the dichloromethane vapor method. The bioactivity of the released BMP-2 and VEGF was then quantified in rat mesenchymal stem cells (rMSCs). Immunoblotting analysis showed that BMP-2/PELA/VEG promoted the differentiation of rMSCs into osteoblasts via the MAPK and Wnt pathways. Osteoblast differentiation was assessed through alkaline phosphatase expression. When compared with simple BMP-2 plus VEGF group and pure PELA group, osteoblast differentiation in BMP-2/PELA/VEGF group significantly increased. An MTT assay indicated that BMP-2-loaded PELA scaffolds had no adverse effects on cell activity. BMP-2/PELA/VEG promoted the differentiation of rMSCs into osteoblast via the ERK1/2 and Wnt pathways. Our findings indicate that the sequential release of BMP-2 and VEGF from PELA microcapsule-based scaffolds is a promising approach for the treatment of bone defects.Associação Brasileira de Divulgação Científica2018-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2018000200603Brazilian Journal of Medical and Biological Research v.51 n.2 2018reponame:Brazilian Journal of Medical and Biological Researchinstname:Associação Brasileira de Divulgação Científica (ABDC)instacron:ABDC10.1590/1414-431x20176520info:eu-repo/semantics/openAccessRen,Q.Cai,M.Zhang,K.Ren,W.Su,Z.Yang,T.Sun,T.Wang,J.eng2019-03-19T00:00:00Zoai:scielo:S0100-879X2018000200603Revistahttps://www.bjournal.org/https://old.scielo.br/oai/scielo-oai.phpbjournal@terra.com.br||bjournal@terra.com.br1414-431X0100-879Xopendoar:2019-03-19T00:00Brazilian Journal of Medical and Biological Research - Associação Brasileira de Divulgação Científica (ABDC)false
dc.title.none.fl_str_mv Effects of bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) release from polylactide-poly (ethylene glycol)-polylactide (PELA) microcapsule-based scaffolds on bone
title Effects of bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) release from polylactide-poly (ethylene glycol)-polylactide (PELA) microcapsule-based scaffolds on bone
spellingShingle Effects of bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) release from polylactide-poly (ethylene glycol)-polylactide (PELA) microcapsule-based scaffolds on bone
Ren,Q.
Bone tissue engineering
BMP-2
VEGF
PELA
Scaffold
title_short Effects of bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) release from polylactide-poly (ethylene glycol)-polylactide (PELA) microcapsule-based scaffolds on bone
title_full Effects of bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) release from polylactide-poly (ethylene glycol)-polylactide (PELA) microcapsule-based scaffolds on bone
title_fullStr Effects of bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) release from polylactide-poly (ethylene glycol)-polylactide (PELA) microcapsule-based scaffolds on bone
title_full_unstemmed Effects of bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) release from polylactide-poly (ethylene glycol)-polylactide (PELA) microcapsule-based scaffolds on bone
title_sort Effects of bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) release from polylactide-poly (ethylene glycol)-polylactide (PELA) microcapsule-based scaffolds on bone
author Ren,Q.
author_facet Ren,Q.
Cai,M.
Zhang,K.
Ren,W.
Su,Z.
Yang,T.
Sun,T.
Wang,J.
author_role author
author2 Cai,M.
Zhang,K.
Ren,W.
Su,Z.
Yang,T.
Sun,T.
Wang,J.
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Ren,Q.
Cai,M.
Zhang,K.
Ren,W.
Su,Z.
Yang,T.
Sun,T.
Wang,J.
dc.subject.por.fl_str_mv Bone tissue engineering
BMP-2
VEGF
PELA
Scaffold
topic Bone tissue engineering
BMP-2
VEGF
PELA
Scaffold
description Multiple growth factors can be administered to mimic the natural process of bone healing in bone tissue engineering. We investigated the effects of sequential release of bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) from polylactide-poly (ethylene glycol)-polylactide (PELA) microcapsule-based scaffolds on bone regeneration. To improve the double emulsion/solvent evaporation technique, VEGF was encapsulated in PELA microcapsules, to which BMP-2 was attached. The scaffold (BMP-2/PELA/VEGF) was then fused to these microcapsules using the dichloromethane vapor method. The bioactivity of the released BMP-2 and VEGF was then quantified in rat mesenchymal stem cells (rMSCs). Immunoblotting analysis showed that BMP-2/PELA/VEG promoted the differentiation of rMSCs into osteoblasts via the MAPK and Wnt pathways. Osteoblast differentiation was assessed through alkaline phosphatase expression. When compared with simple BMP-2 plus VEGF group and pure PELA group, osteoblast differentiation in BMP-2/PELA/VEGF group significantly increased. An MTT assay indicated that BMP-2-loaded PELA scaffolds had no adverse effects on cell activity. BMP-2/PELA/VEG promoted the differentiation of rMSCs into osteoblast via the ERK1/2 and Wnt pathways. Our findings indicate that the sequential release of BMP-2 and VEGF from PELA microcapsule-based scaffolds is a promising approach for the treatment of bone defects.
publishDate 2018
dc.date.none.fl_str_mv 2018-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2018000200603
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2018000200603
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1414-431x20176520
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Divulgação Científica
publisher.none.fl_str_mv Associação Brasileira de Divulgação Científica
dc.source.none.fl_str_mv Brazilian Journal of Medical and Biological Research v.51 n.2 2018
reponame:Brazilian Journal of Medical and Biological Research
instname:Associação Brasileira de Divulgação Científica (ABDC)
instacron:ABDC
instname_str Associação Brasileira de Divulgação Científica (ABDC)
instacron_str ABDC
institution ABDC
reponame_str Brazilian Journal of Medical and Biological Research
collection Brazilian Journal of Medical and Biological Research
repository.name.fl_str_mv Brazilian Journal of Medical and Biological Research - Associação Brasileira de Divulgação Científica (ABDC)
repository.mail.fl_str_mv bjournal@terra.com.br||bjournal@terra.com.br
_version_ 1754302946206547968