In vitro studies of multiwalled carbon nanotube/ultrahigh molecular weight polyethylene nanocomposites with osteoblast-like MG63 cells
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Medical and Biological Research |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2010000500009 |
Resumo: | Carbon nanotubes are highly versatile materials; new applications using them are continuously being developed. Special attention is being dedicated to the possible use of multiwalled carbon nanotubes in biomaterials contacting with bone. However, carbon nanotubes are also controversial in regards to effects exerted on living organisms. Carbon nanotubes can be used to improve the tribological properties of polymer/composite materials. Ultrahigh molecular weight polyethylene (UHMWPE) is a polymer widely used in orthopedic applications that imply wear and particle generation. We describe here the response of human osteoblast-like MG63 cells after 6 days of culture in contact with artificially generated particles from both UHMWPE polymer and multiwalled carbon nanotubes (MWCNT)/UHMWPE nanocomposites. This novel composite has superior wear behavior, having thus the potential to reduce the number of revision hip arthroplasty surgeries required by wear failure of acetabular cups and diminish particle-induced osteolysis. The results of an in vitro study of viability and proliferation and interleukin-6 (IL-6) production suggest good cytocompatibility, similar to that of conventional UHMWPE (WST-1 assay results are reported as percentage of control ± SD: UHMWPE = 96.19 ± 7.92, MWCNT/UHMWPE = 97.92 ± 8.29%; total protein: control = 139.73 ± 10.78, UHMWPE = 137.07 ± 6.17, MWCNT/UHMWPE = 163.29 ± 11.81 µg/mL; IL-6: control = 90.93 ± 10.30, UHMWPE = 92.52 ± 11.02, MWCNT/UHMWPE = 108.99 ± 9.90 pg/mL). Standard cell culture conditions were considered as control. These results, especially the absence of significant elevation in the osteolysis inductor IL-6 values, reinforce the potential of this superior wear-resistant composite for future orthopedic applications, when compared to traditional UHMWPE. |
id |
ABDC-1_fc15ae54f1568b7a8630ba8e4ae2944e |
---|---|
oai_identifier_str |
oai:scielo:S0100-879X2010000500009 |
network_acronym_str |
ABDC-1 |
network_name_str |
Brazilian Journal of Medical and Biological Research |
repository_id_str |
|
spelling |
In vitro studies of multiwalled carbon nanotube/ultrahigh molecular weight polyethylene nanocomposites with osteoblast-like MG63 cellsNanocompositesCarbon nanotubesWear particleOsteoblastOrthopedicMG63 cellsCarbon nanotubes are highly versatile materials; new applications using them are continuously being developed. Special attention is being dedicated to the possible use of multiwalled carbon nanotubes in biomaterials contacting with bone. However, carbon nanotubes are also controversial in regards to effects exerted on living organisms. Carbon nanotubes can be used to improve the tribological properties of polymer/composite materials. Ultrahigh molecular weight polyethylene (UHMWPE) is a polymer widely used in orthopedic applications that imply wear and particle generation. We describe here the response of human osteoblast-like MG63 cells after 6 days of culture in contact with artificially generated particles from both UHMWPE polymer and multiwalled carbon nanotubes (MWCNT)/UHMWPE nanocomposites. This novel composite has superior wear behavior, having thus the potential to reduce the number of revision hip arthroplasty surgeries required by wear failure of acetabular cups and diminish particle-induced osteolysis. The results of an in vitro study of viability and proliferation and interleukin-6 (IL-6) production suggest good cytocompatibility, similar to that of conventional UHMWPE (WST-1 assay results are reported as percentage of control ± SD: UHMWPE = 96.19 ± 7.92, MWCNT/UHMWPE = 97.92 ± 8.29%; total protein: control = 139.73 ± 10.78, UHMWPE = 137.07 ± 6.17, MWCNT/UHMWPE = 163.29 ± 11.81 µg/mL; IL-6: control = 90.93 ± 10.30, UHMWPE = 92.52 ± 11.02, MWCNT/UHMWPE = 108.99 ± 9.90 pg/mL). Standard cell culture conditions were considered as control. These results, especially the absence of significant elevation in the osteolysis inductor IL-6 values, reinforce the potential of this superior wear-resistant composite for future orthopedic applications, when compared to traditional UHMWPE.Associação Brasileira de Divulgação Científica2010-05-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2010000500009Brazilian Journal of Medical and Biological Research v.43 n.5 2010reponame:Brazilian Journal of Medical and Biological Researchinstname:Associação Brasileira de Divulgação Científica (ABDC)instacron:ABDC10.1590/S0100-879X2010007500038info:eu-repo/semantics/openAccessReis,J.Kanagaraj,S.Fonseca,A.Mathew,M.T.Capela-Silva,F.Potes,J.Pereira,A.Oliveira,M.S.A.Simões,J.A.eng2010-05-07T00:00:00Zoai:scielo:S0100-879X2010000500009Revistahttps://www.bjournal.org/https://old.scielo.br/oai/scielo-oai.phpbjournal@terra.com.br||bjournal@terra.com.br1414-431X0100-879Xopendoar:2010-05-07T00:00Brazilian Journal of Medical and Biological Research - Associação Brasileira de Divulgação Científica (ABDC)false |
dc.title.none.fl_str_mv |
In vitro studies of multiwalled carbon nanotube/ultrahigh molecular weight polyethylene nanocomposites with osteoblast-like MG63 cells |
title |
In vitro studies of multiwalled carbon nanotube/ultrahigh molecular weight polyethylene nanocomposites with osteoblast-like MG63 cells |
spellingShingle |
In vitro studies of multiwalled carbon nanotube/ultrahigh molecular weight polyethylene nanocomposites with osteoblast-like MG63 cells Reis,J. Nanocomposites Carbon nanotubes Wear particle Osteoblast Orthopedic MG63 cells |
title_short |
In vitro studies of multiwalled carbon nanotube/ultrahigh molecular weight polyethylene nanocomposites with osteoblast-like MG63 cells |
title_full |
In vitro studies of multiwalled carbon nanotube/ultrahigh molecular weight polyethylene nanocomposites with osteoblast-like MG63 cells |
title_fullStr |
In vitro studies of multiwalled carbon nanotube/ultrahigh molecular weight polyethylene nanocomposites with osteoblast-like MG63 cells |
title_full_unstemmed |
In vitro studies of multiwalled carbon nanotube/ultrahigh molecular weight polyethylene nanocomposites with osteoblast-like MG63 cells |
title_sort |
In vitro studies of multiwalled carbon nanotube/ultrahigh molecular weight polyethylene nanocomposites with osteoblast-like MG63 cells |
author |
Reis,J. |
author_facet |
Reis,J. Kanagaraj,S. Fonseca,A. Mathew,M.T. Capela-Silva,F. Potes,J. Pereira,A. Oliveira,M.S.A. Simões,J.A. |
author_role |
author |
author2 |
Kanagaraj,S. Fonseca,A. Mathew,M.T. Capela-Silva,F. Potes,J. Pereira,A. Oliveira,M.S.A. Simões,J.A. |
author2_role |
author author author author author author author author |
dc.contributor.author.fl_str_mv |
Reis,J. Kanagaraj,S. Fonseca,A. Mathew,M.T. Capela-Silva,F. Potes,J. Pereira,A. Oliveira,M.S.A. Simões,J.A. |
dc.subject.por.fl_str_mv |
Nanocomposites Carbon nanotubes Wear particle Osteoblast Orthopedic MG63 cells |
topic |
Nanocomposites Carbon nanotubes Wear particle Osteoblast Orthopedic MG63 cells |
description |
Carbon nanotubes are highly versatile materials; new applications using them are continuously being developed. Special attention is being dedicated to the possible use of multiwalled carbon nanotubes in biomaterials contacting with bone. However, carbon nanotubes are also controversial in regards to effects exerted on living organisms. Carbon nanotubes can be used to improve the tribological properties of polymer/composite materials. Ultrahigh molecular weight polyethylene (UHMWPE) is a polymer widely used in orthopedic applications that imply wear and particle generation. We describe here the response of human osteoblast-like MG63 cells after 6 days of culture in contact with artificially generated particles from both UHMWPE polymer and multiwalled carbon nanotubes (MWCNT)/UHMWPE nanocomposites. This novel composite has superior wear behavior, having thus the potential to reduce the number of revision hip arthroplasty surgeries required by wear failure of acetabular cups and diminish particle-induced osteolysis. The results of an in vitro study of viability and proliferation and interleukin-6 (IL-6) production suggest good cytocompatibility, similar to that of conventional UHMWPE (WST-1 assay results are reported as percentage of control ± SD: UHMWPE = 96.19 ± 7.92, MWCNT/UHMWPE = 97.92 ± 8.29%; total protein: control = 139.73 ± 10.78, UHMWPE = 137.07 ± 6.17, MWCNT/UHMWPE = 163.29 ± 11.81 µg/mL; IL-6: control = 90.93 ± 10.30, UHMWPE = 92.52 ± 11.02, MWCNT/UHMWPE = 108.99 ± 9.90 pg/mL). Standard cell culture conditions were considered as control. These results, especially the absence of significant elevation in the osteolysis inductor IL-6 values, reinforce the potential of this superior wear-resistant composite for future orthopedic applications, when compared to traditional UHMWPE. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-05-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2010000500009 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2010000500009 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0100-879X2010007500038 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Divulgação Científica |
publisher.none.fl_str_mv |
Associação Brasileira de Divulgação Científica |
dc.source.none.fl_str_mv |
Brazilian Journal of Medical and Biological Research v.43 n.5 2010 reponame:Brazilian Journal of Medical and Biological Research instname:Associação Brasileira de Divulgação Científica (ABDC) instacron:ABDC |
instname_str |
Associação Brasileira de Divulgação Científica (ABDC) |
instacron_str |
ABDC |
institution |
ABDC |
reponame_str |
Brazilian Journal of Medical and Biological Research |
collection |
Brazilian Journal of Medical and Biological Research |
repository.name.fl_str_mv |
Brazilian Journal of Medical and Biological Research - Associação Brasileira de Divulgação Científica (ABDC) |
repository.mail.fl_str_mv |
bjournal@terra.com.br||bjournal@terra.com.br |
_version_ |
1754302938893778944 |