Monitoring the mean vector and the covariance matrix of multivariate processes with sample means and sample ranges
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Production |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-65132011000200003 |
Resumo: | The joint <img src="/img/revistas/prod/2011nahead/aop_t6_0002_0329.jpg" /> and R charts and the joint <img src="/img/revistas/prod/2011nahead/aop_t6_0002_0329.jpg" /> and S² charts are the most common charts used for monitoring the process mean and dispersion. With the usual sample sizes of 4 and 5, the joint <img src="/img/revistas/prod/2011nahead/aop_t6_0002_0329.jpg" /> and R charts are slightly inferior to the joint <img src="/img/revistas/prod/2011nahead/aop_t6_0002_0329.jpg" /> and S² charts in terms of efficiency in detecting process shifts. In this article, we show that for the multivariate case, the charts based on the standardized sample means and sample ranges (MRMAX chart) or on the standardized sample means and sample variances (MVMAX chart) are similar in terms of efficiency in detecting shifts in the mean vector and/or in the covariance matrix. User's familiarity with the computation of sample ranges is a point in favor of the MRMAX chart. An example is presented to illustrate the application of the proposed chart. |
id |
ABEPRO-1_eacd724ed1bc4e23007c0a9d126874e3 |
---|---|
oai_identifier_str |
oai:scielo:S0103-65132011000200003 |
network_acronym_str |
ABEPRO-1 |
network_name_str |
Production |
repository_id_str |
|
spelling |
Monitoring the mean vector and the covariance matrix of multivariate processes with sample means and sample rangesControl chartsMean vectorCovariance matrixMultivariate processesThe joint <img src="/img/revistas/prod/2011nahead/aop_t6_0002_0329.jpg" /> and R charts and the joint <img src="/img/revistas/prod/2011nahead/aop_t6_0002_0329.jpg" /> and S² charts are the most common charts used for monitoring the process mean and dispersion. With the usual sample sizes of 4 and 5, the joint <img src="/img/revistas/prod/2011nahead/aop_t6_0002_0329.jpg" /> and R charts are slightly inferior to the joint <img src="/img/revistas/prod/2011nahead/aop_t6_0002_0329.jpg" /> and S² charts in terms of efficiency in detecting process shifts. In this article, we show that for the multivariate case, the charts based on the standardized sample means and sample ranges (MRMAX chart) or on the standardized sample means and sample variances (MVMAX chart) are similar in terms of efficiency in detecting shifts in the mean vector and/or in the covariance matrix. User's familiarity with the computation of sample ranges is a point in favor of the MRMAX chart. An example is presented to illustrate the application of the proposed chart.Associação Brasileira de Engenharia de Produção2011-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-65132011000200003Production v.21 n.2 2011reponame:Productioninstname:Associação Brasileira de Engenharia de Produção (ABEPRO)instacron:ABEPRO10.1590/S0103-65132011005000029info:eu-repo/semantics/openAccessCosta,Antônio Fernando BrancoMachado,Marcela Aparecida Guerreiroeng2011-07-01T00:00:00Zoai:scielo:S0103-65132011000200003Revistahttps://www.scielo.br/j/prod/https://old.scielo.br/oai/scielo-oai.php||production@editoracubo.com.br1980-54110103-6513opendoar:2011-07-01T00:00Production - Associação Brasileira de Engenharia de Produção (ABEPRO)false |
dc.title.none.fl_str_mv |
Monitoring the mean vector and the covariance matrix of multivariate processes with sample means and sample ranges |
title |
Monitoring the mean vector and the covariance matrix of multivariate processes with sample means and sample ranges |
spellingShingle |
Monitoring the mean vector and the covariance matrix of multivariate processes with sample means and sample ranges Costa,Antônio Fernando Branco Control charts Mean vector Covariance matrix Multivariate processes |
title_short |
Monitoring the mean vector and the covariance matrix of multivariate processes with sample means and sample ranges |
title_full |
Monitoring the mean vector and the covariance matrix of multivariate processes with sample means and sample ranges |
title_fullStr |
Monitoring the mean vector and the covariance matrix of multivariate processes with sample means and sample ranges |
title_full_unstemmed |
Monitoring the mean vector and the covariance matrix of multivariate processes with sample means and sample ranges |
title_sort |
Monitoring the mean vector and the covariance matrix of multivariate processes with sample means and sample ranges |
author |
Costa,Antônio Fernando Branco |
author_facet |
Costa,Antônio Fernando Branco Machado,Marcela Aparecida Guerreiro |
author_role |
author |
author2 |
Machado,Marcela Aparecida Guerreiro |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Costa,Antônio Fernando Branco Machado,Marcela Aparecida Guerreiro |
dc.subject.por.fl_str_mv |
Control charts Mean vector Covariance matrix Multivariate processes |
topic |
Control charts Mean vector Covariance matrix Multivariate processes |
description |
The joint <img src="/img/revistas/prod/2011nahead/aop_t6_0002_0329.jpg" /> and R charts and the joint <img src="/img/revistas/prod/2011nahead/aop_t6_0002_0329.jpg" /> and S² charts are the most common charts used for monitoring the process mean and dispersion. With the usual sample sizes of 4 and 5, the joint <img src="/img/revistas/prod/2011nahead/aop_t6_0002_0329.jpg" /> and R charts are slightly inferior to the joint <img src="/img/revistas/prod/2011nahead/aop_t6_0002_0329.jpg" /> and S² charts in terms of efficiency in detecting process shifts. In this article, we show that for the multivariate case, the charts based on the standardized sample means and sample ranges (MRMAX chart) or on the standardized sample means and sample variances (MVMAX chart) are similar in terms of efficiency in detecting shifts in the mean vector and/or in the covariance matrix. User's familiarity with the computation of sample ranges is a point in favor of the MRMAX chart. An example is presented to illustrate the application of the proposed chart. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-06-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-65132011000200003 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-65132011000200003 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0103-65132011005000029 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Engenharia de Produção |
publisher.none.fl_str_mv |
Associação Brasileira de Engenharia de Produção |
dc.source.none.fl_str_mv |
Production v.21 n.2 2011 reponame:Production instname:Associação Brasileira de Engenharia de Produção (ABEPRO) instacron:ABEPRO |
instname_str |
Associação Brasileira de Engenharia de Produção (ABEPRO) |
instacron_str |
ABEPRO |
institution |
ABEPRO |
reponame_str |
Production |
collection |
Production |
repository.name.fl_str_mv |
Production - Associação Brasileira de Engenharia de Produção (ABEPRO) |
repository.mail.fl_str_mv |
||production@editoracubo.com.br |
_version_ |
1754213151314804736 |