Experimental research through randomness points as metaheuristics suboptimal local responses improvement
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Revista Produção Online |
Texto Completo: | https://www.producaoonline.org.br/rpo/article/view/4398 |
Resumo: | Metaheuristic algorithms are widely used in the optimization of problems in different areas. Several studies have, for example, applied this method to the optimization of truck logistics in open pit mining. This research approaches an experimental analysisof the GRASP* metaheuristic through the variationof the randomness point, with metrics not yet explored in the literature, in order to verify the performance of the algorithm in relation to suboptimal solutions. After the analysis of the algorithmconvergencywith the changes on the randomness points, a study of its performance in relation to the amount of processing cycles was performed. Databases alreadyevaluated in other studies, added to 10 other reference databases present in the literature, were employed during the exploratory analysis of the GRASP* method. In addition, the results obtained by the GRASP* algorithm were compared with the NN* constructive heuristic. The results of this study demonstrate that the changes applied to the GRASP* method provided gains of more than 24% in performance for given values of randomness point and gains of more than 10% with varying numbers of cycles. Such a framework can be implemented for the optimization of logistical strategies that can drive million-dollarbusinesses, such asopen pit mining. |
id |
ABEPRO-2_1fab12e597a152508078e0206f554f51 |
---|---|
oai_identifier_str |
oai:ojs.emnuvens.com.br:article/4398 |
network_acronym_str |
ABEPRO-2 |
network_name_str |
Revista Produção Online |
repository_id_str |
|
spelling |
Experimental research through randomness points as metaheuristics suboptimal local responses improvementEstudo experimental dos pontos de aleatoriedade como estratégia para melhoria de ótimos locais em metaheurísticaMetaheurísticaGRASPGRASP*RoteamentoMinas a Céu AbertoMetaheuristicsGRASPGRASP*RoutingOpen-pit minesMetaheuristic algorithms are widely used in the optimization of problems in different areas. Several studies have, for example, applied this method to the optimization of truck logistics in open pit mining. This research approaches an experimental analysisof the GRASP* metaheuristic through the variationof the randomness point, with metrics not yet explored in the literature, in order to verify the performance of the algorithm in relation to suboptimal solutions. After the analysis of the algorithmconvergencywith the changes on the randomness points, a study of its performance in relation to the amount of processing cycles was performed. Databases alreadyevaluated in other studies, added to 10 other reference databases present in the literature, were employed during the exploratory analysis of the GRASP* method. In addition, the results obtained by the GRASP* algorithm were compared with the NN* constructive heuristic. The results of this study demonstrate that the changes applied to the GRASP* method provided gains of more than 24% in performance for given values of randomness point and gains of more than 10% with varying numbers of cycles. Such a framework can be implemented for the optimization of logistical strategies that can drive million-dollarbusinesses, such asopen pit mining.Algoritmos de metaheurísticasão largamente empregados na otimizaçãode problemasem diferentesáreas.Diversos estudos têm, por exemplo, aplicado esse método naotimizaçãoda logística de caminhões em mina a céu aberto.Esta pesquisa abordauma análise experimental da metaheurística GRASP* por meio do deslocamento do ponto de aleatoriedade, com métricas ainda não exploradas na literatura, a fim de severificar o desempenhodo algoritmo em relaçãoarespostassubótimas. Após a análise do comportamento do algoritmo com a alteração dos pontos de aleatoriedade, foi realizadoum estudode seu desempenhoem relação aquantidade dos ciclos de processamento. Basesde dadosjá avaliadas em outras pesquisas, somadas a 10 outras bases de referência presentes naliteratura,foram empregadasdurante aanálise exploratória do método GRASP*.Alémdisso, os resultadosobtidos peloalgoritmo GRASP* foramcomparadoscomaheurística construtiva NN*. Os resultados do presenteestudodemonstram que as alterações aplicadas aométodo GRASP* proporcionaramganhos de mais de 24% em desempenho para determinados valoresde deslocamento de pontos de aleatoriedadee ganhos de mais de 10% com a variação de números de ciclos.Talestrutura pode ser implementadapara a otimização de estratégias logísticasque podem conduzir negócios de milhões de dólares, como a mineração a céu aberto.Associação Brasileira de Engenharia de Produção2022-03-25info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfvideo/mp4https://www.producaoonline.org.br/rpo/article/view/439810.14488/1676-1901.v21i4.4398Revista Produção Online; Vol. 21 No. 4 (2021); 2185-2208Revista Produção Online; v. 21 n. 4 (2021); 2185-22081676-1901reponame:Revista Produção Onlineinstname:Associação Brasileira de Engenharia de Produção (ABEPRO)instacron:ABEPROporhttps://www.producaoonline.org.br/rpo/article/view/4398/2131https://www.producaoonline.org.br/rpo/article/view/4398/2132Copyright (c) 2022 Revista Produção Onlinehttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessSouza, Flávio Henrique Batista deRodrigues, Diva de Souza e SilvaRocha, Vladimir Alexei RodriguesMellim, Renata DuarteMarcatti, Lucas Alberto QueirozSantos, Daniela Ferreira dosFerreira, Ana Gabriela Furbino2022-03-25T20:29:32Zoai:ojs.emnuvens.com.br:article/4398Revistahttp://producaoonline.org.br/rpoPUBhttps://www.producaoonline.org.br/rpo/oai||producaoonline@gmail.com1676-19011676-1901opendoar:2022-03-25T20:29:32Revista Produção Online - Associação Brasileira de Engenharia de Produção (ABEPRO)false |
dc.title.none.fl_str_mv |
Experimental research through randomness points as metaheuristics suboptimal local responses improvement Estudo experimental dos pontos de aleatoriedade como estratégia para melhoria de ótimos locais em metaheurística |
title |
Experimental research through randomness points as metaheuristics suboptimal local responses improvement |
spellingShingle |
Experimental research through randomness points as metaheuristics suboptimal local responses improvement Souza, Flávio Henrique Batista de Metaheurística GRASP GRASP* Roteamento Minas a Céu Aberto Metaheuristics GRASP GRASP* Routing Open-pit mines |
title_short |
Experimental research through randomness points as metaheuristics suboptimal local responses improvement |
title_full |
Experimental research through randomness points as metaheuristics suboptimal local responses improvement |
title_fullStr |
Experimental research through randomness points as metaheuristics suboptimal local responses improvement |
title_full_unstemmed |
Experimental research through randomness points as metaheuristics suboptimal local responses improvement |
title_sort |
Experimental research through randomness points as metaheuristics suboptimal local responses improvement |
author |
Souza, Flávio Henrique Batista de |
author_facet |
Souza, Flávio Henrique Batista de Rodrigues, Diva de Souza e Silva Rocha, Vladimir Alexei Rodrigues Mellim, Renata Duarte Marcatti, Lucas Alberto Queiroz Santos, Daniela Ferreira dos Ferreira, Ana Gabriela Furbino |
author_role |
author |
author2 |
Rodrigues, Diva de Souza e Silva Rocha, Vladimir Alexei Rodrigues Mellim, Renata Duarte Marcatti, Lucas Alberto Queiroz Santos, Daniela Ferreira dos Ferreira, Ana Gabriela Furbino |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Souza, Flávio Henrique Batista de Rodrigues, Diva de Souza e Silva Rocha, Vladimir Alexei Rodrigues Mellim, Renata Duarte Marcatti, Lucas Alberto Queiroz Santos, Daniela Ferreira dos Ferreira, Ana Gabriela Furbino |
dc.subject.por.fl_str_mv |
Metaheurística GRASP GRASP* Roteamento Minas a Céu Aberto Metaheuristics GRASP GRASP* Routing Open-pit mines |
topic |
Metaheurística GRASP GRASP* Roteamento Minas a Céu Aberto Metaheuristics GRASP GRASP* Routing Open-pit mines |
description |
Metaheuristic algorithms are widely used in the optimization of problems in different areas. Several studies have, for example, applied this method to the optimization of truck logistics in open pit mining. This research approaches an experimental analysisof the GRASP* metaheuristic through the variationof the randomness point, with metrics not yet explored in the literature, in order to verify the performance of the algorithm in relation to suboptimal solutions. After the analysis of the algorithmconvergencywith the changes on the randomness points, a study of its performance in relation to the amount of processing cycles was performed. Databases alreadyevaluated in other studies, added to 10 other reference databases present in the literature, were employed during the exploratory analysis of the GRASP* method. In addition, the results obtained by the GRASP* algorithm were compared with the NN* constructive heuristic. The results of this study demonstrate that the changes applied to the GRASP* method provided gains of more than 24% in performance for given values of randomness point and gains of more than 10% with varying numbers of cycles. Such a framework can be implemented for the optimization of logistical strategies that can drive million-dollarbusinesses, such asopen pit mining. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-03-25 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.producaoonline.org.br/rpo/article/view/4398 10.14488/1676-1901.v21i4.4398 |
url |
https://www.producaoonline.org.br/rpo/article/view/4398 |
identifier_str_mv |
10.14488/1676-1901.v21i4.4398 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://www.producaoonline.org.br/rpo/article/view/4398/2131 https://www.producaoonline.org.br/rpo/article/view/4398/2132 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2022 Revista Produção Online https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2022 Revista Produção Online https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf video/mp4 |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Engenharia de Produção |
publisher.none.fl_str_mv |
Associação Brasileira de Engenharia de Produção |
dc.source.none.fl_str_mv |
Revista Produção Online; Vol. 21 No. 4 (2021); 2185-2208 Revista Produção Online; v. 21 n. 4 (2021); 2185-2208 1676-1901 reponame:Revista Produção Online instname:Associação Brasileira de Engenharia de Produção (ABEPRO) instacron:ABEPRO |
instname_str |
Associação Brasileira de Engenharia de Produção (ABEPRO) |
instacron_str |
ABEPRO |
institution |
ABEPRO |
reponame_str |
Revista Produção Online |
collection |
Revista Produção Online |
repository.name.fl_str_mv |
Revista Produção Online - Associação Brasileira de Engenharia de Produção (ABEPRO) |
repository.mail.fl_str_mv |
||producaoonline@gmail.com |
_version_ |
1761536951911972864 |