Experimental research through randomness points as metaheuristics suboptimal local responses improvement

Detalhes bibliográficos
Autor(a) principal: Souza, Flávio Henrique Batista de
Data de Publicação: 2022
Outros Autores: Rodrigues, Diva de Souza e Silva, Rocha, Vladimir Alexei Rodrigues, Mellim, Renata Duarte, Marcatti, Lucas Alberto Queiroz, Santos, Daniela Ferreira dos, Ferreira, Ana Gabriela Furbino
Tipo de documento: Artigo
Idioma: por
Título da fonte: Revista Produção Online
Texto Completo: https://www.producaoonline.org.br/rpo/article/view/4398
Resumo: Metaheuristic algorithms are widely used in the optimization of problems in different areas. Several studies have, for example, applied this method to the optimization of truck logistics in open pit mining. This research approaches an experimental analysisof the GRASP* metaheuristic through the variationof the randomness point, with metrics not yet explored in the literature, in order to verify the performance of the algorithm in relation to suboptimal solutions. After the analysis of the algorithmconvergencywith the changes on the randomness points, a study of its performance in relation to the amount of processing cycles was performed. Databases alreadyevaluated in other studies, added to 10 other reference databases present in the literature, were employed during the exploratory analysis of the GRASP* method. In addition, the results obtained by the GRASP* algorithm were compared with the NN* constructive heuristic. The results of this study demonstrate that the changes applied to the GRASP* method provided gains of more than 24% in performance for given values of randomness point and gains of more than 10% with varying numbers of cycles. Such a framework can be implemented for the optimization of logistical strategies that can drive million-dollarbusinesses, such asopen pit mining.
id ABEPRO-2_1fab12e597a152508078e0206f554f51
oai_identifier_str oai:ojs.emnuvens.com.br:article/4398
network_acronym_str ABEPRO-2
network_name_str Revista Produção Online
repository_id_str
spelling Experimental research through randomness points as metaheuristics suboptimal local responses improvementEstudo experimental dos pontos de aleatoriedade como estratégia para melhoria de ótimos locais em metaheurísticaMetaheurísticaGRASPGRASP*RoteamentoMinas a Céu AbertoMetaheuristicsGRASPGRASP*RoutingOpen-pit minesMetaheuristic algorithms are widely used in the optimization of problems in different areas. Several studies have, for example, applied this method to the optimization of truck logistics in open pit mining. This research approaches an experimental analysisof the GRASP* metaheuristic through the variationof the randomness point, with metrics not yet explored in the literature, in order to verify the performance of the algorithm in relation to suboptimal solutions. After the analysis of the algorithmconvergencywith the changes on the randomness points, a study of its performance in relation to the amount of processing cycles was performed. Databases alreadyevaluated in other studies, added to 10 other reference databases present in the literature, were employed during the exploratory analysis of the GRASP* method. In addition, the results obtained by the GRASP* algorithm were compared with the NN* constructive heuristic. The results of this study demonstrate that the changes applied to the GRASP* method provided gains of more than 24% in performance for given values of randomness point and gains of more than 10% with varying numbers of cycles. Such a framework can be implemented for the optimization of logistical strategies that can drive million-dollarbusinesses, such asopen pit mining.Algoritmos de metaheurísticasão largamente empregados na otimizaçãode problemasem diferentesáreas.Diversos estudos têm, por exemplo, aplicado esse método naotimizaçãoda logística de caminhões em mina a céu aberto.Esta pesquisa abordauma análise experimental da metaheurística GRASP* por meio do deslocamento do ponto de aleatoriedade, com métricas ainda não exploradas na literatura, a fim de severificar o desempenhodo algoritmo em relaçãoarespostassubótimas. Após a análise do comportamento do algoritmo com a alteração dos pontos de aleatoriedade, foi realizadoum estudode seu desempenhoem relação aquantidade dos ciclos de processamento. Basesde dadosjá avaliadas em outras pesquisas, somadas a 10 outras bases de referência presentes naliteratura,foram empregadasdurante aanálise exploratória do método GRASP*.Alémdisso, os resultadosobtidos peloalgoritmo GRASP* foramcomparadoscomaheurística construtiva NN*. Os resultados do presenteestudodemonstram que as alterações aplicadas aométodo GRASP* proporcionaramganhos de mais de 24% em desempenho para determinados valoresde deslocamento de pontos de aleatoriedadee ganhos de mais de 10% com a variação de números de ciclos.Talestrutura pode ser implementadapara a otimização de estratégias logísticasque podem conduzir negócios de milhões de dólares, como a mineração a céu aberto.Associação Brasileira de Engenharia de Produção2022-03-25info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfvideo/mp4https://www.producaoonline.org.br/rpo/article/view/439810.14488/1676-1901.v21i4.4398Revista Produção Online; Vol. 21 No. 4 (2021); 2185-2208Revista Produção Online; v. 21 n. 4 (2021); 2185-22081676-1901reponame:Revista Produção Onlineinstname:Associação Brasileira de Engenharia de Produção (ABEPRO)instacron:ABEPROporhttps://www.producaoonline.org.br/rpo/article/view/4398/2131https://www.producaoonline.org.br/rpo/article/view/4398/2132Copyright (c) 2022 Revista Produção Onlinehttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessSouza, Flávio Henrique Batista deRodrigues, Diva de Souza e SilvaRocha, Vladimir Alexei RodriguesMellim, Renata DuarteMarcatti, Lucas Alberto QueirozSantos, Daniela Ferreira dosFerreira, Ana Gabriela Furbino2022-03-25T20:29:32Zoai:ojs.emnuvens.com.br:article/4398Revistahttp://producaoonline.org.br/rpoPUBhttps://www.producaoonline.org.br/rpo/oai||producaoonline@gmail.com1676-19011676-1901opendoar:2022-03-25T20:29:32Revista Produção Online - Associação Brasileira de Engenharia de Produção (ABEPRO)false
dc.title.none.fl_str_mv Experimental research through randomness points as metaheuristics suboptimal local responses improvement
Estudo experimental dos pontos de aleatoriedade como estratégia para melhoria de ótimos locais em metaheurística
title Experimental research through randomness points as metaheuristics suboptimal local responses improvement
spellingShingle Experimental research through randomness points as metaheuristics suboptimal local responses improvement
Souza, Flávio Henrique Batista de
Metaheurística
GRASP
GRASP*
Roteamento
Minas a Céu Aberto
Metaheuristics
GRASP
GRASP*
Routing
Open-pit mines
title_short Experimental research through randomness points as metaheuristics suboptimal local responses improvement
title_full Experimental research through randomness points as metaheuristics suboptimal local responses improvement
title_fullStr Experimental research through randomness points as metaheuristics suboptimal local responses improvement
title_full_unstemmed Experimental research through randomness points as metaheuristics suboptimal local responses improvement
title_sort Experimental research through randomness points as metaheuristics suboptimal local responses improvement
author Souza, Flávio Henrique Batista de
author_facet Souza, Flávio Henrique Batista de
Rodrigues, Diva de Souza e Silva
Rocha, Vladimir Alexei Rodrigues
Mellim, Renata Duarte
Marcatti, Lucas Alberto Queiroz
Santos, Daniela Ferreira dos
Ferreira, Ana Gabriela Furbino
author_role author
author2 Rodrigues, Diva de Souza e Silva
Rocha, Vladimir Alexei Rodrigues
Mellim, Renata Duarte
Marcatti, Lucas Alberto Queiroz
Santos, Daniela Ferreira dos
Ferreira, Ana Gabriela Furbino
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Souza, Flávio Henrique Batista de
Rodrigues, Diva de Souza e Silva
Rocha, Vladimir Alexei Rodrigues
Mellim, Renata Duarte
Marcatti, Lucas Alberto Queiroz
Santos, Daniela Ferreira dos
Ferreira, Ana Gabriela Furbino
dc.subject.por.fl_str_mv Metaheurística
GRASP
GRASP*
Roteamento
Minas a Céu Aberto
Metaheuristics
GRASP
GRASP*
Routing
Open-pit mines
topic Metaheurística
GRASP
GRASP*
Roteamento
Minas a Céu Aberto
Metaheuristics
GRASP
GRASP*
Routing
Open-pit mines
description Metaheuristic algorithms are widely used in the optimization of problems in different areas. Several studies have, for example, applied this method to the optimization of truck logistics in open pit mining. This research approaches an experimental analysisof the GRASP* metaheuristic through the variationof the randomness point, with metrics not yet explored in the literature, in order to verify the performance of the algorithm in relation to suboptimal solutions. After the analysis of the algorithmconvergencywith the changes on the randomness points, a study of its performance in relation to the amount of processing cycles was performed. Databases alreadyevaluated in other studies, added to 10 other reference databases present in the literature, were employed during the exploratory analysis of the GRASP* method. In addition, the results obtained by the GRASP* algorithm were compared with the NN* constructive heuristic. The results of this study demonstrate that the changes applied to the GRASP* method provided gains of more than 24% in performance for given values of randomness point and gains of more than 10% with varying numbers of cycles. Such a framework can be implemented for the optimization of logistical strategies that can drive million-dollarbusinesses, such asopen pit mining.
publishDate 2022
dc.date.none.fl_str_mv 2022-03-25
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.producaoonline.org.br/rpo/article/view/4398
10.14488/1676-1901.v21i4.4398
url https://www.producaoonline.org.br/rpo/article/view/4398
identifier_str_mv 10.14488/1676-1901.v21i4.4398
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://www.producaoonline.org.br/rpo/article/view/4398/2131
https://www.producaoonline.org.br/rpo/article/view/4398/2132
dc.rights.driver.fl_str_mv Copyright (c) 2022 Revista Produção Online
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2022 Revista Produção Online
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
video/mp4
dc.publisher.none.fl_str_mv Associação Brasileira de Engenharia de Produção
publisher.none.fl_str_mv Associação Brasileira de Engenharia de Produção
dc.source.none.fl_str_mv Revista Produção Online; Vol. 21 No. 4 (2021); 2185-2208
Revista Produção Online; v. 21 n. 4 (2021); 2185-2208
1676-1901
reponame:Revista Produção Online
instname:Associação Brasileira de Engenharia de Produção (ABEPRO)
instacron:ABEPRO
instname_str Associação Brasileira de Engenharia de Produção (ABEPRO)
instacron_str ABEPRO
institution ABEPRO
reponame_str Revista Produção Online
collection Revista Produção Online
repository.name.fl_str_mv Revista Produção Online - Associação Brasileira de Engenharia de Produção (ABEPRO)
repository.mail.fl_str_mv ||producaoonline@gmail.com
_version_ 1761536951911972864