Application of genetic algorithm and simulated anneling methaeuristics in a steel process

Detalhes bibliográficos
Autor(a) principal: Pimenta, Cristie Diego
Data de Publicação: 2021
Outros Autores: Silva, Messias Borges, Marins, Fernando Augusto Silva
Tipo de documento: Artigo
Idioma: por
Título da fonte: Revista Produção Online
Texto Completo: https://www.producaoonline.org.br/rpo/article/view/4200
Resumo: The aim of this article is to show the application of Genetic and Simulated Anneling algorithms to optimize statistical predictions for the process of tempering heat treatment in steel wires. This statistical modeling may be able to replace the process used for the preparation of tempering and tempering furnaces, which is traditionally carried out by means of adjustments made from the result of the mechanical hardness property, tested in the laboratory and required to meet customer specifications. We sought to understand the influence of the input variables (factors) and their effects on the mechanical property hardness, in SAE 9254 steel wires, for the 2.00mm diameter, used for the manufacture of valve and clutch springs for the follow-up automobile. The main input variables of the process were investigated and for that, the Quadratic Multiple Regression and the Response Surface Methodology (RSM) were used. For the optimization of the statistical model, the methodologies Genetic Algorithm (AG) and the Simulated Annealing Meta-heuristic were used. The results revealed that it is possible to obtain good results if this statistical model is used and if the statistical model is optimized through the techniques applied in this article. If the methodologies are applied correctly, this could bring scientific advances that could provide the automation of this process, and consequently this could contribute to the increase in productivity and product quality.
id ABEPRO-2_6dd47bbdec7c5b13ba251df674c7555c
oai_identifier_str oai:ojs.emnuvens.com.br:article/4200
network_acronym_str ABEPRO-2
network_name_str Revista Produção Online
repository_id_str
spelling Application of genetic algorithm and simulated anneling methaeuristics in a steel processAplicação de algorítmo genético e da methaeurística simulated anneling em um processo siderúrgicoHeat Treatment. SAE 9254. Response Surface MetodologyGenetic algorithms. Meta-heuristic.Tratamento Térmico. SAE 9254. Metodologia de Superfície de Resposta. Algorítmos Genéticos. Meta-heurística.The aim of this article is to show the application of Genetic and Simulated Anneling algorithms to optimize statistical predictions for the process of tempering heat treatment in steel wires. This statistical modeling may be able to replace the process used for the preparation of tempering and tempering furnaces, which is traditionally carried out by means of adjustments made from the result of the mechanical hardness property, tested in the laboratory and required to meet customer specifications. We sought to understand the influence of the input variables (factors) and their effects on the mechanical property hardness, in SAE 9254 steel wires, for the 2.00mm diameter, used for the manufacture of valve and clutch springs for the follow-up automobile. The main input variables of the process were investigated and for that, the Quadratic Multiple Regression and the Response Surface Methodology (RSM) were used. For the optimization of the statistical model, the methodologies Genetic Algorithm (AG) and the Simulated Annealing Meta-heuristic were used. The results revealed that it is possible to obtain good results if this statistical model is used and if the statistical model is optimized through the techniques applied in this article. If the methodologies are applied correctly, this could bring scientific advances that could provide the automation of this process, and consequently this could contribute to the increase in productivity and product quality.O objetivo deste artigo é mostrar a aplicação de algoritmo Genético e de Simulated Anneling para otimizar as predições estatísticas para o processo de tratamento térmico de têmpera em arames de aço. Essa modelagem estatística pode ser capaz de substituir o processo utilizado para a preparação de fornos de têmpera e revenimento, que tradicionalmente é realizada por meio de ajustes feitos a partir do resultado da propriedade mecânica dureza, ensaiada em laboratório e exigida para atender as especificações de clientes. Buscou-se compreender a influência das variáveis de entrada (fatores) e os seus efeitos na  propriedade mecânica dureza, em arames de aço SAE 9254, para o diâmetro 2,00mm, utilizado para a fabricação de molas de válvula e de embreagem para o seguimento automobilístico. Foram investigadas as principais variáveis de entrada do processo e para isso, utilizaram-se as metodologias Regressão Múltipla Quadrática e a Metodologia de Superfícies de Resposta (RSM). Para a otimização do modelo estatístico foram utilizadas as metodologias Algoritmo Genético (AG) e a Meta-heurística Recozimento Simulado (Simulated Anneling). Os resultados revelaram que é possível se obter bons resultados se utilizada essa modelagem estatística e se o modelo estatístico for otimizado por meio das técnicas aplicadas neste artigo. Se as metodologias forem aplicadas corretamente, isso poderá trazer avanços científicos que poderiam proporcionar a automatização deste processo, e consequentemente isso poderia contribuir para o aumento de produtividade e da qualidade do produto.Associação Brasileira de Engenharia de Produção2021-03-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfvideo/mp4https://www.producaoonline.org.br/rpo/article/view/420010.14488/1676-1901.v21i1.4200Revista Produção Online; Vol. 21 No. 1 (2021); 178-202Revista Produção Online; v. 21 n. 1 (2021); 178-2021676-1901reponame:Revista Produção Onlineinstname:Associação Brasileira de Engenharia de Produção (ABEPRO)instacron:ABEPROporhttps://www.producaoonline.org.br/rpo/article/view/4200/2015https://www.producaoonline.org.br/rpo/article/view/4200/2016Copyright (c) 2021 Revista Produção Onlineinfo:eu-repo/semantics/openAccessPimenta, Cristie DiegoSilva, Messias BorgesMarins, Fernando Augusto Silva2021-03-16T02:35:06Zoai:ojs.emnuvens.com.br:article/4200Revistahttp://producaoonline.org.br/rpoPUBhttps://www.producaoonline.org.br/rpo/oai||producaoonline@gmail.com1676-19011676-1901opendoar:2021-03-16T02:35:06Revista Produção Online - Associação Brasileira de Engenharia de Produção (ABEPRO)false
dc.title.none.fl_str_mv Application of genetic algorithm and simulated anneling methaeuristics in a steel process
Aplicação de algorítmo genético e da methaeurística simulated anneling em um processo siderúrgico
title Application of genetic algorithm and simulated anneling methaeuristics in a steel process
spellingShingle Application of genetic algorithm and simulated anneling methaeuristics in a steel process
Pimenta, Cristie Diego
Heat Treatment. SAE 9254. Response Surface Metodology
Genetic algorithms. Meta-heuristic.
Tratamento Térmico. SAE 9254. Metodologia de Superfície de Resposta. Algorítmos Genéticos. Meta-heurística.
title_short Application of genetic algorithm and simulated anneling methaeuristics in a steel process
title_full Application of genetic algorithm and simulated anneling methaeuristics in a steel process
title_fullStr Application of genetic algorithm and simulated anneling methaeuristics in a steel process
title_full_unstemmed Application of genetic algorithm and simulated anneling methaeuristics in a steel process
title_sort Application of genetic algorithm and simulated anneling methaeuristics in a steel process
author Pimenta, Cristie Diego
author_facet Pimenta, Cristie Diego
Silva, Messias Borges
Marins, Fernando Augusto Silva
author_role author
author2 Silva, Messias Borges
Marins, Fernando Augusto Silva
author2_role author
author
dc.contributor.author.fl_str_mv Pimenta, Cristie Diego
Silva, Messias Borges
Marins, Fernando Augusto Silva
dc.subject.por.fl_str_mv Heat Treatment. SAE 9254. Response Surface Metodology
Genetic algorithms. Meta-heuristic.
Tratamento Térmico. SAE 9254. Metodologia de Superfície de Resposta. Algorítmos Genéticos. Meta-heurística.
topic Heat Treatment. SAE 9254. Response Surface Metodology
Genetic algorithms. Meta-heuristic.
Tratamento Térmico. SAE 9254. Metodologia de Superfície de Resposta. Algorítmos Genéticos. Meta-heurística.
description The aim of this article is to show the application of Genetic and Simulated Anneling algorithms to optimize statistical predictions for the process of tempering heat treatment in steel wires. This statistical modeling may be able to replace the process used for the preparation of tempering and tempering furnaces, which is traditionally carried out by means of adjustments made from the result of the mechanical hardness property, tested in the laboratory and required to meet customer specifications. We sought to understand the influence of the input variables (factors) and their effects on the mechanical property hardness, in SAE 9254 steel wires, for the 2.00mm diameter, used for the manufacture of valve and clutch springs for the follow-up automobile. The main input variables of the process were investigated and for that, the Quadratic Multiple Regression and the Response Surface Methodology (RSM) were used. For the optimization of the statistical model, the methodologies Genetic Algorithm (AG) and the Simulated Annealing Meta-heuristic were used. The results revealed that it is possible to obtain good results if this statistical model is used and if the statistical model is optimized through the techniques applied in this article. If the methodologies are applied correctly, this could bring scientific advances that could provide the automation of this process, and consequently this could contribute to the increase in productivity and product quality.
publishDate 2021
dc.date.none.fl_str_mv 2021-03-15
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.producaoonline.org.br/rpo/article/view/4200
10.14488/1676-1901.v21i1.4200
url https://www.producaoonline.org.br/rpo/article/view/4200
identifier_str_mv 10.14488/1676-1901.v21i1.4200
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://www.producaoonline.org.br/rpo/article/view/4200/2015
https://www.producaoonline.org.br/rpo/article/view/4200/2016
dc.rights.driver.fl_str_mv Copyright (c) 2021 Revista Produção Online
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2021 Revista Produção Online
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
video/mp4
dc.publisher.none.fl_str_mv Associação Brasileira de Engenharia de Produção
publisher.none.fl_str_mv Associação Brasileira de Engenharia de Produção
dc.source.none.fl_str_mv Revista Produção Online; Vol. 21 No. 1 (2021); 178-202
Revista Produção Online; v. 21 n. 1 (2021); 178-202
1676-1901
reponame:Revista Produção Online
instname:Associação Brasileira de Engenharia de Produção (ABEPRO)
instacron:ABEPRO
instname_str Associação Brasileira de Engenharia de Produção (ABEPRO)
instacron_str ABEPRO
institution ABEPRO
reponame_str Revista Produção Online
collection Revista Produção Online
repository.name.fl_str_mv Revista Produção Online - Associação Brasileira de Engenharia de Produção (ABEPRO)
repository.mail.fl_str_mv ||producaoonline@gmail.com
_version_ 1761536951701209088