Application of genetic algorithm and simulated anneling methaeuristics in a steel process
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Revista Produção Online |
Texto Completo: | https://www.producaoonline.org.br/rpo/article/view/4200 |
Resumo: | The aim of this article is to show the application of Genetic and Simulated Anneling algorithms to optimize statistical predictions for the process of tempering heat treatment in steel wires. This statistical modeling may be able to replace the process used for the preparation of tempering and tempering furnaces, which is traditionally carried out by means of adjustments made from the result of the mechanical hardness property, tested in the laboratory and required to meet customer specifications. We sought to understand the influence of the input variables (factors) and their effects on the mechanical property hardness, in SAE 9254 steel wires, for the 2.00mm diameter, used for the manufacture of valve and clutch springs for the follow-up automobile. The main input variables of the process were investigated and for that, the Quadratic Multiple Regression and the Response Surface Methodology (RSM) were used. For the optimization of the statistical model, the methodologies Genetic Algorithm (AG) and the Simulated Annealing Meta-heuristic were used. The results revealed that it is possible to obtain good results if this statistical model is used and if the statistical model is optimized through the techniques applied in this article. If the methodologies are applied correctly, this could bring scientific advances that could provide the automation of this process, and consequently this could contribute to the increase in productivity and product quality. |
id |
ABEPRO-2_6dd47bbdec7c5b13ba251df674c7555c |
---|---|
oai_identifier_str |
oai:ojs.emnuvens.com.br:article/4200 |
network_acronym_str |
ABEPRO-2 |
network_name_str |
Revista Produção Online |
repository_id_str |
|
spelling |
Application of genetic algorithm and simulated anneling methaeuristics in a steel processAplicação de algorítmo genético e da methaeurística simulated anneling em um processo siderúrgicoHeat Treatment. SAE 9254. Response Surface MetodologyGenetic algorithms. Meta-heuristic.Tratamento Térmico. SAE 9254. Metodologia de Superfície de Resposta. Algorítmos Genéticos. Meta-heurística.The aim of this article is to show the application of Genetic and Simulated Anneling algorithms to optimize statistical predictions for the process of tempering heat treatment in steel wires. This statistical modeling may be able to replace the process used for the preparation of tempering and tempering furnaces, which is traditionally carried out by means of adjustments made from the result of the mechanical hardness property, tested in the laboratory and required to meet customer specifications. We sought to understand the influence of the input variables (factors) and their effects on the mechanical property hardness, in SAE 9254 steel wires, for the 2.00mm diameter, used for the manufacture of valve and clutch springs for the follow-up automobile. The main input variables of the process were investigated and for that, the Quadratic Multiple Regression and the Response Surface Methodology (RSM) were used. For the optimization of the statistical model, the methodologies Genetic Algorithm (AG) and the Simulated Annealing Meta-heuristic were used. The results revealed that it is possible to obtain good results if this statistical model is used and if the statistical model is optimized through the techniques applied in this article. If the methodologies are applied correctly, this could bring scientific advances that could provide the automation of this process, and consequently this could contribute to the increase in productivity and product quality.O objetivo deste artigo é mostrar a aplicação de algoritmo Genético e de Simulated Anneling para otimizar as predições estatísticas para o processo de tratamento térmico de têmpera em arames de aço. Essa modelagem estatística pode ser capaz de substituir o processo utilizado para a preparação de fornos de têmpera e revenimento, que tradicionalmente é realizada por meio de ajustes feitos a partir do resultado da propriedade mecânica dureza, ensaiada em laboratório e exigida para atender as especificações de clientes. Buscou-se compreender a influência das variáveis de entrada (fatores) e os seus efeitos na propriedade mecânica dureza, em arames de aço SAE 9254, para o diâmetro 2,00mm, utilizado para a fabricação de molas de válvula e de embreagem para o seguimento automobilístico. Foram investigadas as principais variáveis de entrada do processo e para isso, utilizaram-se as metodologias Regressão Múltipla Quadrática e a Metodologia de Superfícies de Resposta (RSM). Para a otimização do modelo estatístico foram utilizadas as metodologias Algoritmo Genético (AG) e a Meta-heurística Recozimento Simulado (Simulated Anneling). Os resultados revelaram que é possível se obter bons resultados se utilizada essa modelagem estatística e se o modelo estatístico for otimizado por meio das técnicas aplicadas neste artigo. Se as metodologias forem aplicadas corretamente, isso poderá trazer avanços científicos que poderiam proporcionar a automatização deste processo, e consequentemente isso poderia contribuir para o aumento de produtividade e da qualidade do produto.Associação Brasileira de Engenharia de Produção2021-03-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfvideo/mp4https://www.producaoonline.org.br/rpo/article/view/420010.14488/1676-1901.v21i1.4200Revista Produção Online; Vol. 21 No. 1 (2021); 178-202Revista Produção Online; v. 21 n. 1 (2021); 178-2021676-1901reponame:Revista Produção Onlineinstname:Associação Brasileira de Engenharia de Produção (ABEPRO)instacron:ABEPROporhttps://www.producaoonline.org.br/rpo/article/view/4200/2015https://www.producaoonline.org.br/rpo/article/view/4200/2016Copyright (c) 2021 Revista Produção Onlineinfo:eu-repo/semantics/openAccessPimenta, Cristie DiegoSilva, Messias BorgesMarins, Fernando Augusto Silva2021-03-16T02:35:06Zoai:ojs.emnuvens.com.br:article/4200Revistahttp://producaoonline.org.br/rpoPUBhttps://www.producaoonline.org.br/rpo/oai||producaoonline@gmail.com1676-19011676-1901opendoar:2021-03-16T02:35:06Revista Produção Online - Associação Brasileira de Engenharia de Produção (ABEPRO)false |
dc.title.none.fl_str_mv |
Application of genetic algorithm and simulated anneling methaeuristics in a steel process Aplicação de algorítmo genético e da methaeurística simulated anneling em um processo siderúrgico |
title |
Application of genetic algorithm and simulated anneling methaeuristics in a steel process |
spellingShingle |
Application of genetic algorithm and simulated anneling methaeuristics in a steel process Pimenta, Cristie Diego Heat Treatment. SAE 9254. Response Surface Metodology Genetic algorithms. Meta-heuristic. Tratamento Térmico. SAE 9254. Metodologia de Superfície de Resposta. Algorítmos Genéticos. Meta-heurística. |
title_short |
Application of genetic algorithm and simulated anneling methaeuristics in a steel process |
title_full |
Application of genetic algorithm and simulated anneling methaeuristics in a steel process |
title_fullStr |
Application of genetic algorithm and simulated anneling methaeuristics in a steel process |
title_full_unstemmed |
Application of genetic algorithm and simulated anneling methaeuristics in a steel process |
title_sort |
Application of genetic algorithm and simulated anneling methaeuristics in a steel process |
author |
Pimenta, Cristie Diego |
author_facet |
Pimenta, Cristie Diego Silva, Messias Borges Marins, Fernando Augusto Silva |
author_role |
author |
author2 |
Silva, Messias Borges Marins, Fernando Augusto Silva |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Pimenta, Cristie Diego Silva, Messias Borges Marins, Fernando Augusto Silva |
dc.subject.por.fl_str_mv |
Heat Treatment. SAE 9254. Response Surface Metodology Genetic algorithms. Meta-heuristic. Tratamento Térmico. SAE 9254. Metodologia de Superfície de Resposta. Algorítmos Genéticos. Meta-heurística. |
topic |
Heat Treatment. SAE 9254. Response Surface Metodology Genetic algorithms. Meta-heuristic. Tratamento Térmico. SAE 9254. Metodologia de Superfície de Resposta. Algorítmos Genéticos. Meta-heurística. |
description |
The aim of this article is to show the application of Genetic and Simulated Anneling algorithms to optimize statistical predictions for the process of tempering heat treatment in steel wires. This statistical modeling may be able to replace the process used for the preparation of tempering and tempering furnaces, which is traditionally carried out by means of adjustments made from the result of the mechanical hardness property, tested in the laboratory and required to meet customer specifications. We sought to understand the influence of the input variables (factors) and their effects on the mechanical property hardness, in SAE 9254 steel wires, for the 2.00mm diameter, used for the manufacture of valve and clutch springs for the follow-up automobile. The main input variables of the process were investigated and for that, the Quadratic Multiple Regression and the Response Surface Methodology (RSM) were used. For the optimization of the statistical model, the methodologies Genetic Algorithm (AG) and the Simulated Annealing Meta-heuristic were used. The results revealed that it is possible to obtain good results if this statistical model is used and if the statistical model is optimized through the techniques applied in this article. If the methodologies are applied correctly, this could bring scientific advances that could provide the automation of this process, and consequently this could contribute to the increase in productivity and product quality. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-03-15 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.producaoonline.org.br/rpo/article/view/4200 10.14488/1676-1901.v21i1.4200 |
url |
https://www.producaoonline.org.br/rpo/article/view/4200 |
identifier_str_mv |
10.14488/1676-1901.v21i1.4200 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://www.producaoonline.org.br/rpo/article/view/4200/2015 https://www.producaoonline.org.br/rpo/article/view/4200/2016 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2021 Revista Produção Online info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2021 Revista Produção Online |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf video/mp4 |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Engenharia de Produção |
publisher.none.fl_str_mv |
Associação Brasileira de Engenharia de Produção |
dc.source.none.fl_str_mv |
Revista Produção Online; Vol. 21 No. 1 (2021); 178-202 Revista Produção Online; v. 21 n. 1 (2021); 178-202 1676-1901 reponame:Revista Produção Online instname:Associação Brasileira de Engenharia de Produção (ABEPRO) instacron:ABEPRO |
instname_str |
Associação Brasileira de Engenharia de Produção (ABEPRO) |
instacron_str |
ABEPRO |
institution |
ABEPRO |
reponame_str |
Revista Produção Online |
collection |
Revista Produção Online |
repository.name.fl_str_mv |
Revista Produção Online - Associação Brasileira de Engenharia de Produção (ABEPRO) |
repository.mail.fl_str_mv |
||producaoonline@gmail.com |
_version_ |
1761536951701209088 |