Forecasting of exported volume for brazilian fruits by time series analysis: an arima/garch approach
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Revista Produção Online |
Texto Completo: | https://www.producaoonline.org.br/rpo/article/view/1926 |
Resumo: | The aim of this paper was to offer econometric forecasting models to the Brazilian exported volume fruits, with a view to assisting the planning and production control, also motivated by the existence of a few published papers dealing with this issue. In this sense, it was used the ARIMA/GARCH models, considering, likewise, the occurrence of a multiplicative stochastic seasonality in these series. They were collected 300 observations of exported net weight (kg) between Jan/1989 and Dec/2013 of the following fruits: pineapple, banana, orange, lemon, apple, papaya, mango, watermelon, melon and grape, which selection criteria was its importance in the exported basket fruit, because they represented 97% of total received dollars, and 99% of total volume sold in 2010, of a population about 28 kinds of exported fruits. The results showed that it was not only observed the existence of a 12 month multiplicative seasonality in banana and mango. On the other hand, they were identified two fruits groups: (1) those which are continuously exported, and (2) those which have export peaks. On the quality of the models, they were considered satisfactory for six of the ten fruits analyzed. On the volatility, it was seen a high persistence in banana and papaya series, pointing to the existence of a structural break in time series, which could be linked to the economic crises happened in the last 17 years. |
id |
ABEPRO-2_fb212ecf49016fc4867c5d8f11854576 |
---|---|
oai_identifier_str |
oai:ojs.emnuvens.com.br:article/1926 |
network_acronym_str |
ABEPRO-2 |
network_name_str |
Revista Produção Online |
repository_id_str |
|
spelling |
Forecasting of exported volume for brazilian fruits by time series analysis: an arima/garch approachPrevisão do volume exportado para a fruticultura brasileira via análise de séries temporais: uma abordagem ARIMA/GARCHExported fruits. Forecasting. Time series. ARIMA models. GARCH models.Fruticultura exportadora. Previsão. Séries Temporais. Modelos ARIMA. Modelos GARCHThe aim of this paper was to offer econometric forecasting models to the Brazilian exported volume fruits, with a view to assisting the planning and production control, also motivated by the existence of a few published papers dealing with this issue. In this sense, it was used the ARIMA/GARCH models, considering, likewise, the occurrence of a multiplicative stochastic seasonality in these series. They were collected 300 observations of exported net weight (kg) between Jan/1989 and Dec/2013 of the following fruits: pineapple, banana, orange, lemon, apple, papaya, mango, watermelon, melon and grape, which selection criteria was its importance in the exported basket fruit, because they represented 97% of total received dollars, and 99% of total volume sold in 2010, of a population about 28 kinds of exported fruits. The results showed that it was not only observed the existence of a 12 month multiplicative seasonality in banana and mango. On the other hand, they were identified two fruits groups: (1) those which are continuously exported, and (2) those which have export peaks. On the quality of the models, they were considered satisfactory for six of the ten fruits analyzed. On the volatility, it was seen a high persistence in banana and papaya series, pointing to the existence of a structural break in time series, which could be linked to the economic crises happened in the last 17 years.O objetivo deste trabalho foi propor modelos de previsão econométricos para o volume exportado da fruticultura brasileira, com vistas a auxiliar o planejamento e controle de sua produção, motivado também pela constatação de poucos estudos publicados tratando desse tema. Nesse sentido, empregou-se os modelos ARIMA/GARCH, considerando-se, outrossim, a ocorrência de uma sazonalidade estocástica multiplicativa nessas séries históricas. Foram coletadas 300 observações de peso líquido (kg) exportado entre jan/1989 a dez/2013 das seguintes frutas: abacaxi, banana, laranja, limão-lima, maçã, mamão, manga, melancia, melão e uva, cujo critério de seleção foi a sua importância na pauta de exportação frutícola, pois representavam 97% do total de dólares recebidos e 99% do volume vendido em 2010, de uma população de 28 tipos de frutas exportadas. Os resultados indicam que só não foi observada a existência de sazonalidade multiplicativa de 12 meses na banana e na manga. Por outro lado, foram identificadas dois grupos de frutas: (1) as que são exportadas continuamente, e (2) as que possuem picos de exportação. Sobre a qualidade dos modelos de previsão, eles foram considerados satisfatórios para seis das dez frutas analisadas. Quanto à volatilidade, verificou-se uma alta persistência das séries da banana e do mamão, apontando para a existência de uma quebra estrutural na série de dados, que pode estar associada às crises econômicas ocorridas nos últimos 17 anos.Associação Brasileira de Engenharia de Produção2015-06-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfaudio/mpeghttps://www.producaoonline.org.br/rpo/article/view/192610.14488/1676-1901.v15i2.1926Revista Produção Online; Vol. 15 No. 2 (2015); 553-572Revista Produção Online; v. 15 n. 2 (2015); 553-5721676-1901reponame:Revista Produção Onlineinstname:Associação Brasileira de Engenharia de Produção (ABEPRO)instacron:ABEPROporhttps://www.producaoonline.org.br/rpo/article/view/1926/1279https://www.producaoonline.org.br/rpo/article/view/1926/1280Copyright (c) 2015 Revista Produção Onlineinfo:eu-repo/semantics/openAccessOliveira, Abdinardo Moreira Barreto deCrisóstomo, Antônio Pires2015-11-11T17:25:27Zoai:ojs.emnuvens.com.br:article/1926Revistahttp://producaoonline.org.br/rpoPUBhttps://www.producaoonline.org.br/rpo/oai||producaoonline@gmail.com1676-19011676-1901opendoar:2015-11-11T17:25:27Revista Produção Online - Associação Brasileira de Engenharia de Produção (ABEPRO)false |
dc.title.none.fl_str_mv |
Forecasting of exported volume for brazilian fruits by time series analysis: an arima/garch approach Previsão do volume exportado para a fruticultura brasileira via análise de séries temporais: uma abordagem ARIMA/GARCH |
title |
Forecasting of exported volume for brazilian fruits by time series analysis: an arima/garch approach |
spellingShingle |
Forecasting of exported volume for brazilian fruits by time series analysis: an arima/garch approach Oliveira, Abdinardo Moreira Barreto de Exported fruits. Forecasting. Time series. ARIMA models. GARCH models. Fruticultura exportadora. Previsão. Séries Temporais. Modelos ARIMA. Modelos GARCH |
title_short |
Forecasting of exported volume for brazilian fruits by time series analysis: an arima/garch approach |
title_full |
Forecasting of exported volume for brazilian fruits by time series analysis: an arima/garch approach |
title_fullStr |
Forecasting of exported volume for brazilian fruits by time series analysis: an arima/garch approach |
title_full_unstemmed |
Forecasting of exported volume for brazilian fruits by time series analysis: an arima/garch approach |
title_sort |
Forecasting of exported volume for brazilian fruits by time series analysis: an arima/garch approach |
author |
Oliveira, Abdinardo Moreira Barreto de |
author_facet |
Oliveira, Abdinardo Moreira Barreto de Crisóstomo, Antônio Pires |
author_role |
author |
author2 |
Crisóstomo, Antônio Pires |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Oliveira, Abdinardo Moreira Barreto de Crisóstomo, Antônio Pires |
dc.subject.por.fl_str_mv |
Exported fruits. Forecasting. Time series. ARIMA models. GARCH models. Fruticultura exportadora. Previsão. Séries Temporais. Modelos ARIMA. Modelos GARCH |
topic |
Exported fruits. Forecasting. Time series. ARIMA models. GARCH models. Fruticultura exportadora. Previsão. Séries Temporais. Modelos ARIMA. Modelos GARCH |
description |
The aim of this paper was to offer econometric forecasting models to the Brazilian exported volume fruits, with a view to assisting the planning and production control, also motivated by the existence of a few published papers dealing with this issue. In this sense, it was used the ARIMA/GARCH models, considering, likewise, the occurrence of a multiplicative stochastic seasonality in these series. They were collected 300 observations of exported net weight (kg) between Jan/1989 and Dec/2013 of the following fruits: pineapple, banana, orange, lemon, apple, papaya, mango, watermelon, melon and grape, which selection criteria was its importance in the exported basket fruit, because they represented 97% of total received dollars, and 99% of total volume sold in 2010, of a population about 28 kinds of exported fruits. The results showed that it was not only observed the existence of a 12 month multiplicative seasonality in banana and mango. On the other hand, they were identified two fruits groups: (1) those which are continuously exported, and (2) those which have export peaks. On the quality of the models, they were considered satisfactory for six of the ten fruits analyzed. On the volatility, it was seen a high persistence in banana and papaya series, pointing to the existence of a structural break in time series, which could be linked to the economic crises happened in the last 17 years. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-06-15 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.producaoonline.org.br/rpo/article/view/1926 10.14488/1676-1901.v15i2.1926 |
url |
https://www.producaoonline.org.br/rpo/article/view/1926 |
identifier_str_mv |
10.14488/1676-1901.v15i2.1926 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://www.producaoonline.org.br/rpo/article/view/1926/1279 https://www.producaoonline.org.br/rpo/article/view/1926/1280 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2015 Revista Produção Online info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2015 Revista Produção Online |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf audio/mpeg |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Engenharia de Produção |
publisher.none.fl_str_mv |
Associação Brasileira de Engenharia de Produção |
dc.source.none.fl_str_mv |
Revista Produção Online; Vol. 15 No. 2 (2015); 553-572 Revista Produção Online; v. 15 n. 2 (2015); 553-572 1676-1901 reponame:Revista Produção Online instname:Associação Brasileira de Engenharia de Produção (ABEPRO) instacron:ABEPRO |
instname_str |
Associação Brasileira de Engenharia de Produção (ABEPRO) |
instacron_str |
ABEPRO |
institution |
ABEPRO |
reponame_str |
Revista Produção Online |
collection |
Revista Produção Online |
repository.name.fl_str_mv |
Revista Produção Online - Associação Brasileira de Engenharia de Produção (ABEPRO) |
repository.mail.fl_str_mv |
||producaoonline@gmail.com |
_version_ |
1761536949833695232 |