Fuzzy rule-based classifier for Fault Prediction in a Thermoelectric Unit

Detalhes bibliográficos
Autor(a) principal: Pereira, Otacílio José
Data de Publicação: 2014
Outros Autores: Fontes, Cristiano Hora de Oliveira, Cavalcante, Carlos Arthur M. Teixeira, Barretto, Sérgio Torres Sá, Pacheco, Luciana de Almeida
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Operations & Production Management (Online)
Texto Completo: https://bjopm.org.br/bjopm/article/view/V10N2A8
Resumo: Pattern recognition from data is a potential alternative for the extraction of knowledge about processes and it may be useful for predicting failures, control and support decision making, among others. The knowledge extracted can be used to implement models based on Artificial Intelligence such as Fuzzy Inference Systems (FIS). Tools from Information Technology (IT) and automation techniques can also be used in data-based approaches to enable the storage and handling of large amounts of historical process data. This paper presents the implementation of a fuzzy inference system for fault prediction in a gas turbine of a thermoelectric unit. The first step comprised the pattern recognition through the clustering of multivariate time series obtained from the Plant Information Management System (PIMS). The second step comprised the development of a FIS using a data-based approach to define the membership functions and rules. The results showed the potential of the fuzzy model to predict the probability of failure during the start of the turbine this presenting a feasible alternative to support decision-making at operational level.
id ABEPRO_81d884565ee946956a8dfafd851fff45
oai_identifier_str oai:ojs.bjopm.org.br:article/204
network_acronym_str ABEPRO
network_name_str Brazilian Journal of Operations & Production Management (Online)
repository_id_str
spelling Fuzzy rule-based classifier for Fault Prediction in a Thermoelectric Unitfuzzy inference systemspattern recognitionmultivariate time seriesfault prediction.Pattern recognition from data is a potential alternative for the extraction of knowledge about processes and it may be useful for predicting failures, control and support decision making, among others. The knowledge extracted can be used to implement models based on Artificial Intelligence such as Fuzzy Inference Systems (FIS). Tools from Information Technology (IT) and automation techniques can also be used in data-based approaches to enable the storage and handling of large amounts of historical process data. This paper presents the implementation of a fuzzy inference system for fault prediction in a gas turbine of a thermoelectric unit. The first step comprised the pattern recognition through the clustering of multivariate time series obtained from the Plant Information Management System (PIMS). The second step comprised the development of a FIS using a data-based approach to define the membership functions and rules. The results showed the potential of the fuzzy model to predict the probability of failure during the start of the turbine this presenting a feasible alternative to support decision-making at operational level.Brazilian Association for Industrial Engineering and Operations Management (ABEPRO)2014-02-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPeer-reviewed Articleapplication/pdfhttps://bjopm.org.br/bjopm/article/view/V10N2A8Brazilian Journal of Operations & Production Management; Vol. 10 No. 2 (2013): December, 2013; 79-902237-8960reponame:Brazilian Journal of Operations & Production Management (Online)instname:Associação Brasileira de Engenharia de Produção (ABEPRO)instacron:ABEPROenghttps://bjopm.org.br/bjopm/article/view/V10N2A8/158Copyright (c) 2014 Brazilian Journal of Operations & Production Managementinfo:eu-repo/semantics/openAccessPereira, Otacílio JoséFontes, Cristiano Hora de OliveiraCavalcante, Carlos Arthur M. TeixeiraBarretto, Sérgio Torres SáPacheco, Luciana de Almeida2019-04-04T07:28:31Zoai:ojs.bjopm.org.br:article/204Revistahttps://bjopm.org.br/bjopmONGhttps://bjopm.org.br/bjopm/oaibjopm.journal@gmail.com2237-89601679-8171opendoar:2023-03-13T09:45:07.949257Brazilian Journal of Operations & Production Management (Online) - Associação Brasileira de Engenharia de Produção (ABEPRO)false
dc.title.none.fl_str_mv Fuzzy rule-based classifier for Fault Prediction in a Thermoelectric Unit
title Fuzzy rule-based classifier for Fault Prediction in a Thermoelectric Unit
spellingShingle Fuzzy rule-based classifier for Fault Prediction in a Thermoelectric Unit
Pereira, Otacílio José
fuzzy inference systems
pattern recognition
multivariate time series
fault prediction.
title_short Fuzzy rule-based classifier for Fault Prediction in a Thermoelectric Unit
title_full Fuzzy rule-based classifier for Fault Prediction in a Thermoelectric Unit
title_fullStr Fuzzy rule-based classifier for Fault Prediction in a Thermoelectric Unit
title_full_unstemmed Fuzzy rule-based classifier for Fault Prediction in a Thermoelectric Unit
title_sort Fuzzy rule-based classifier for Fault Prediction in a Thermoelectric Unit
author Pereira, Otacílio José
author_facet Pereira, Otacílio José
Fontes, Cristiano Hora de Oliveira
Cavalcante, Carlos Arthur M. Teixeira
Barretto, Sérgio Torres Sá
Pacheco, Luciana de Almeida
author_role author
author2 Fontes, Cristiano Hora de Oliveira
Cavalcante, Carlos Arthur M. Teixeira
Barretto, Sérgio Torres Sá
Pacheco, Luciana de Almeida
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Pereira, Otacílio José
Fontes, Cristiano Hora de Oliveira
Cavalcante, Carlos Arthur M. Teixeira
Barretto, Sérgio Torres Sá
Pacheco, Luciana de Almeida
dc.subject.por.fl_str_mv fuzzy inference systems
pattern recognition
multivariate time series
fault prediction.
topic fuzzy inference systems
pattern recognition
multivariate time series
fault prediction.
description Pattern recognition from data is a potential alternative for the extraction of knowledge about processes and it may be useful for predicting failures, control and support decision making, among others. The knowledge extracted can be used to implement models based on Artificial Intelligence such as Fuzzy Inference Systems (FIS). Tools from Information Technology (IT) and automation techniques can also be used in data-based approaches to enable the storage and handling of large amounts of historical process data. This paper presents the implementation of a fuzzy inference system for fault prediction in a gas turbine of a thermoelectric unit. The first step comprised the pattern recognition through the clustering of multivariate time series obtained from the Plant Information Management System (PIMS). The second step comprised the development of a FIS using a data-based approach to define the membership functions and rules. The results showed the potential of the fuzzy model to predict the probability of failure during the start of the turbine this presenting a feasible alternative to support decision-making at operational level.
publishDate 2014
dc.date.none.fl_str_mv 2014-02-05
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Peer-reviewed Article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://bjopm.org.br/bjopm/article/view/V10N2A8
url https://bjopm.org.br/bjopm/article/view/V10N2A8
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://bjopm.org.br/bjopm/article/view/V10N2A8/158
dc.rights.driver.fl_str_mv Copyright (c) 2014 Brazilian Journal of Operations & Production Management
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2014 Brazilian Journal of Operations & Production Management
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Brazilian Association for Industrial Engineering and Operations Management (ABEPRO)
publisher.none.fl_str_mv Brazilian Association for Industrial Engineering and Operations Management (ABEPRO)
dc.source.none.fl_str_mv Brazilian Journal of Operations & Production Management; Vol. 10 No. 2 (2013): December, 2013; 79-90
2237-8960
reponame:Brazilian Journal of Operations & Production Management (Online)
instname:Associação Brasileira de Engenharia de Produção (ABEPRO)
instacron:ABEPRO
instname_str Associação Brasileira de Engenharia de Produção (ABEPRO)
instacron_str ABEPRO
institution ABEPRO
reponame_str Brazilian Journal of Operations & Production Management (Online)
collection Brazilian Journal of Operations & Production Management (Online)
repository.name.fl_str_mv Brazilian Journal of Operations & Production Management (Online) - Associação Brasileira de Engenharia de Produção (ABEPRO)
repository.mail.fl_str_mv bjopm.journal@gmail.com
_version_ 1797051460084563968