Optimizing dissolved air flotation design system
Autor(a) principal: | |
---|---|
Data de Publicação: | 2000 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Chemical Engineering |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322000000400019 |
Resumo: | Dissolved Air (Pressure) Flotation-DAF, is a well-established separation process that employs micro-bubbles as a carrier phase. This work shows results concerning bubble generation at low working pressures in modified DAF-units to improve the collection of fragile coagula by bubbles. DAF of Fe (OH)3 (as model) was studied as a function of saturation pressure in the absence and presence of surfactants in the saturator. DAF was possible at 2 atm by lowering the air/water surface tension. This fact, which leads to substantial energy savings, was explained in terms of decreasing the "minimum" energy required for bubble nucleation and cavity in the nozzle. More, bubbles-fragile coagula attachment was improved by dividing the recycling water into two: 1) the inclined inlet to the cell (traditional) and 2) inside the separation tank through a water flow inlet situated below the floating bed using a "mushroom" type diffuser. Because of the reduction observed in the degree of turbulence in the conventional collection zone, DAF performance improved yielding high precipitate recoveries. |
id |
ABEQ-1_09187899c78ec89dad8f23e365e94a84 |
---|---|
oai_identifier_str |
oai:scielo:S0104-66322000000400019 |
network_acronym_str |
ABEQ-1 |
network_name_str |
Brazilian Journal of Chemical Engineering |
repository_id_str |
|
spelling |
Optimizing dissolved air flotation design systemflotationprecipitateair saturation systemsurfactantDissolved Air (Pressure) Flotation-DAF, is a well-established separation process that employs micro-bubbles as a carrier phase. This work shows results concerning bubble generation at low working pressures in modified DAF-units to improve the collection of fragile coagula by bubbles. DAF of Fe (OH)3 (as model) was studied as a function of saturation pressure in the absence and presence of surfactants in the saturator. DAF was possible at 2 atm by lowering the air/water surface tension. This fact, which leads to substantial energy savings, was explained in terms of decreasing the "minimum" energy required for bubble nucleation and cavity in the nozzle. More, bubbles-fragile coagula attachment was improved by dividing the recycling water into two: 1) the inclined inlet to the cell (traditional) and 2) inside the separation tank through a water flow inlet situated below the floating bed using a "mushroom" type diffuser. Because of the reduction observed in the degree of turbulence in the conventional collection zone, DAF performance improved yielding high precipitate recoveries.Brazilian Society of Chemical Engineering2000-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322000000400019Brazilian Journal of Chemical Engineering v.17 n.4-7 2000reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/S0104-66322000000400019info:eu-repo/semantics/openAccessFéris,L.A.Gallina,S.C.W.Rodrigues,R.T.Rubio,J.eng2001-03-16T00:00:00Zoai:scielo:S0104-66322000000400019Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2001-03-16T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false |
dc.title.none.fl_str_mv |
Optimizing dissolved air flotation design system |
title |
Optimizing dissolved air flotation design system |
spellingShingle |
Optimizing dissolved air flotation design system Féris,L.A. flotation precipitate air saturation system surfactant |
title_short |
Optimizing dissolved air flotation design system |
title_full |
Optimizing dissolved air flotation design system |
title_fullStr |
Optimizing dissolved air flotation design system |
title_full_unstemmed |
Optimizing dissolved air flotation design system |
title_sort |
Optimizing dissolved air flotation design system |
author |
Féris,L.A. |
author_facet |
Féris,L.A. Gallina,S.C.W. Rodrigues,R.T. Rubio,J. |
author_role |
author |
author2 |
Gallina,S.C.W. Rodrigues,R.T. Rubio,J. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Féris,L.A. Gallina,S.C.W. Rodrigues,R.T. Rubio,J. |
dc.subject.por.fl_str_mv |
flotation precipitate air saturation system surfactant |
topic |
flotation precipitate air saturation system surfactant |
description |
Dissolved Air (Pressure) Flotation-DAF, is a well-established separation process that employs micro-bubbles as a carrier phase. This work shows results concerning bubble generation at low working pressures in modified DAF-units to improve the collection of fragile coagula by bubbles. DAF of Fe (OH)3 (as model) was studied as a function of saturation pressure in the absence and presence of surfactants in the saturator. DAF was possible at 2 atm by lowering the air/water surface tension. This fact, which leads to substantial energy savings, was explained in terms of decreasing the "minimum" energy required for bubble nucleation and cavity in the nozzle. More, bubbles-fragile coagula attachment was improved by dividing the recycling water into two: 1) the inclined inlet to the cell (traditional) and 2) inside the separation tank through a water flow inlet situated below the floating bed using a "mushroom" type diffuser. Because of the reduction observed in the degree of turbulence in the conventional collection zone, DAF performance improved yielding high precipitate recoveries. |
publishDate |
2000 |
dc.date.none.fl_str_mv |
2000-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322000000400019 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322000000400019 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0104-66322000000400019 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
dc.source.none.fl_str_mv |
Brazilian Journal of Chemical Engineering v.17 n.4-7 2000 reponame:Brazilian Journal of Chemical Engineering instname:Associação Brasileira de Engenharia Química (ABEQ) instacron:ABEQ |
instname_str |
Associação Brasileira de Engenharia Química (ABEQ) |
instacron_str |
ABEQ |
institution |
ABEQ |
reponame_str |
Brazilian Journal of Chemical Engineering |
collection |
Brazilian Journal of Chemical Engineering |
repository.name.fl_str_mv |
Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ) |
repository.mail.fl_str_mv |
rgiudici@usp.br||rgiudici@usp.br |
_version_ |
1754213170750160896 |