Batch removal of manganese from acid mine drainage using bone char
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Chemical Engineering |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322014000100018 |
Resumo: | The present study investigated batch kinetics and the batch equilibrium of manganese removal from acid mine drainage (AMD) using bone char as an adsorbent. Equilibrium tests revealed that the Langmuir-based maximum manganese uptake capacity was 22 mg g-1 for AMD effluents and 20 mg g-1 for laboratory solutions at a pH ranging from 5.5 to 5.7. The pseudo-second order model best described the manganese kinetics within bone char. Manganese removal was mainly influenced by the operating variables of the solid/liquid ratio and the pH of the aqueous phase. In fact, metal uptake was favored at nearly neutral pH values. The effect of particle size and temperature proved to be insignificant for the investigated operating range. This work also evaluated the mechanism for manganese removal using bone char. Results showed that intraparticle diffusion is the main rate-limiting step; however, additional contributions from boundary layer diffusion may well affect this removal when particles of smaller sizes are used. The final concentration of fluoride and other metals present in the AMD effluent was in agreement with the concentration limit set forth by Brazilian legislation. The present study demonstrated that bone char is a suitable material to be used for the removal of manganese from AMD effluents. |
id |
ABEQ-1_1060eeeea450a3fccbb3477de5f19451 |
---|---|
oai_identifier_str |
oai:scielo:S0104-66322014000100018 |
network_acronym_str |
ABEQ-1 |
network_name_str |
Brazilian Journal of Chemical Engineering |
repository_id_str |
|
spelling |
Batch removal of manganese from acid mine drainage using bone charManganeseBone charAcid mine drainageAdsorptionThe present study investigated batch kinetics and the batch equilibrium of manganese removal from acid mine drainage (AMD) using bone char as an adsorbent. Equilibrium tests revealed that the Langmuir-based maximum manganese uptake capacity was 22 mg g-1 for AMD effluents and 20 mg g-1 for laboratory solutions at a pH ranging from 5.5 to 5.7. The pseudo-second order model best described the manganese kinetics within bone char. Manganese removal was mainly influenced by the operating variables of the solid/liquid ratio and the pH of the aqueous phase. In fact, metal uptake was favored at nearly neutral pH values. The effect of particle size and temperature proved to be insignificant for the investigated operating range. This work also evaluated the mechanism for manganese removal using bone char. Results showed that intraparticle diffusion is the main rate-limiting step; however, additional contributions from boundary layer diffusion may well affect this removal when particles of smaller sizes are used. The final concentration of fluoride and other metals present in the AMD effluent was in agreement with the concentration limit set forth by Brazilian legislation. The present study demonstrated that bone char is a suitable material to be used for the removal of manganese from AMD effluents.Brazilian Society of Chemical Engineering2014-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322014000100018Brazilian Journal of Chemical Engineering v.31 n.1 2014reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/S0104-66322014000100018info:eu-repo/semantics/openAccessSicupira,D. C.Silva,T. TolentinoLeão,V. A.Mansur,M. B.eng2014-03-20T00:00:00Zoai:scielo:S0104-66322014000100018Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2014-03-20T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false |
dc.title.none.fl_str_mv |
Batch removal of manganese from acid mine drainage using bone char |
title |
Batch removal of manganese from acid mine drainage using bone char |
spellingShingle |
Batch removal of manganese from acid mine drainage using bone char Sicupira,D. C. Manganese Bone char Acid mine drainage Adsorption |
title_short |
Batch removal of manganese from acid mine drainage using bone char |
title_full |
Batch removal of manganese from acid mine drainage using bone char |
title_fullStr |
Batch removal of manganese from acid mine drainage using bone char |
title_full_unstemmed |
Batch removal of manganese from acid mine drainage using bone char |
title_sort |
Batch removal of manganese from acid mine drainage using bone char |
author |
Sicupira,D. C. |
author_facet |
Sicupira,D. C. Silva,T. Tolentino Leão,V. A. Mansur,M. B. |
author_role |
author |
author2 |
Silva,T. Tolentino Leão,V. A. Mansur,M. B. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Sicupira,D. C. Silva,T. Tolentino Leão,V. A. Mansur,M. B. |
dc.subject.por.fl_str_mv |
Manganese Bone char Acid mine drainage Adsorption |
topic |
Manganese Bone char Acid mine drainage Adsorption |
description |
The present study investigated batch kinetics and the batch equilibrium of manganese removal from acid mine drainage (AMD) using bone char as an adsorbent. Equilibrium tests revealed that the Langmuir-based maximum manganese uptake capacity was 22 mg g-1 for AMD effluents and 20 mg g-1 for laboratory solutions at a pH ranging from 5.5 to 5.7. The pseudo-second order model best described the manganese kinetics within bone char. Manganese removal was mainly influenced by the operating variables of the solid/liquid ratio and the pH of the aqueous phase. In fact, metal uptake was favored at nearly neutral pH values. The effect of particle size and temperature proved to be insignificant for the investigated operating range. This work also evaluated the mechanism for manganese removal using bone char. Results showed that intraparticle diffusion is the main rate-limiting step; however, additional contributions from boundary layer diffusion may well affect this removal when particles of smaller sizes are used. The final concentration of fluoride and other metals present in the AMD effluent was in agreement with the concentration limit set forth by Brazilian legislation. The present study demonstrated that bone char is a suitable material to be used for the removal of manganese from AMD effluents. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-03-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322014000100018 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322014000100018 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0104-66322014000100018 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
dc.source.none.fl_str_mv |
Brazilian Journal of Chemical Engineering v.31 n.1 2014 reponame:Brazilian Journal of Chemical Engineering instname:Associação Brasileira de Engenharia Química (ABEQ) instacron:ABEQ |
instname_str |
Associação Brasileira de Engenharia Química (ABEQ) |
instacron_str |
ABEQ |
institution |
ABEQ |
reponame_str |
Brazilian Journal of Chemical Engineering |
collection |
Brazilian Journal of Chemical Engineering |
repository.name.fl_str_mv |
Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ) |
repository.mail.fl_str_mv |
rgiudici@usp.br||rgiudici@usp.br |
_version_ |
1754213174270230528 |